Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


It’s complicated - new insights into the evolutionary history of bears


According to researchers of the LOEWE Biodiversity and Climate Research Centre (BiK-F), Goethe University Frankfurt and the U.S. Wildlife Service several bear species that today only occur in America or in Asia have hybridized in their evolutionary history. The Beringia land bridge, which in former times connected the habitats of these species, might have enabled their encounter. The large-scale study is based on the comparison and analysis of genetic material of all bear species that still exist. The results have been published recently in the journal Evolution and Molecular Biology.

American black bear. Copyright: Tobias Bidon

If in documentaries or in the zoo - everyone has seen and knows about brown bears, polar bears and pandas. However, there are several other bear species in Asia and South America that are less well-known, such as the sloth bear, the Asiatic or the spectacled bear. There are eight bear species that still exist worldwide. Despite many years of research, the exact relationships between them remain unresolved.

Who with whom? Polar bear and brown have hybridized
Previous analyses of genetic material of polar bears and brown bears have proven already that the two species have hybridized during their long evolutionary history. This behavior can still be observed today and the ongoing climate change drives the bear even closer. It is therefore likely that there have been similar exchanges of genetic material between other species of the bear family.

... as well as brown bears and black bears
To shed light on this, a team of the German Biodiversity and Climate Research Centre (BiK-F) and the Goethe University Frankfurt in cooperation with colleagues from the US have now analyzed certain genome parts of all bear species alive today. "We were able to show that several bear species have hybridized during their evolutionary history. The exchange can still be traced in the genetic makeup of today's bears," says the lead author of the study, Verena Kutschera (BiK-F). This mix-up makes it difficult to classify some gene fragments as belonging to a particular species.

Beringia land bridge serving as an intercontinental meeting point
Surprisingly, several bear species which nowadays live on different continents have also taken part in the mating and thus gene exchange. This may have been possible because the significantly lower sea level during past ice ages resulted in a land bridge between Asia and North America, the Beringia land bridge. Thus the ancestors of today’s bear species, e.g. of the Asiatic black bear and the American black bear, had the opportunity to meet and to mate.

Darwin’s species tree is insufficient to map complicated relationships
All eight bear species that occur today have well adapted to their present habi-tat and differ physically very much. A prime example for this is polar bears and black bears. Nevertheless, the speciation of some individual genes has not finished yet which additionally complicates the research of the evolution of bears.

With new molecular methods more gene parts might be discovered in the genomes of mammal species that could originate from other species. Apparently separate genetic lineages turn out to have merged – sometimes repeatedly – during the evolutionary history and exchanged genetic material with each other. "The traditional pedigree already used by Darwin is not always suitable to map evolutionary history in full detail. So-called phylogenetic networks a more useful to depict the genetic mix-up that we have found ", comments evolutionary biologist Prof. Dr. Axel Janke, BiK-F, leader of the research team. The study demonstrates that evolution often is not a linear process; thanks to modern molecular methods it’s complex processes are finally revealed.

Kutschera, V. et al. Bears in a forest of gene trees: Phylogenetic inference is complicated by incomplete lineage sorting and gene flow – Molecular Biology and Evolution, DOI: 10.1093/molbev/msu186

For further information please contact:

Prof. Dr. Axel Janke
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. +49 (0)69 7542 1842

Verena Kutschera
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. +49 (0)69 7542 1828

Sabine Wendler
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Press officer
Tel. +49 (0)69 7542 1838

LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main
With the objective of analysis the complex interactions between biodiversity and climate through a wide range of methods, the Biodiversität und Klima Forschungszentrum [Biodiversity and Climate Research Centre] (BiK‐F) has been funded since 2008 within the context of the Landes‐ Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz (LOEWE) of the Land of Hessen. The Senckenberg Gesellschaft für Naturforschung and Goethe University in Frankfurt as well as other, directly involved partners, co‐operate closely with regional, national and international institutions in the fields of science, resource and environmental management, in order to develop projections for the future and scientific recommendations for sustainable action. For further details, please visit www.bik‐

Sabine Wendler | Senckenberg

Further reports about: Beringia BiK-F Biodiversity Biodiversität Biology Climate Evolution Molecular Senckenberg history relationships

More articles from Life Sciences:

nachricht Microbe hunters discover long-sought-after iron-munching microbe
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.
24.10.2016 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>