Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ISU researchers help map first plant-parasitic nematode genome sequence

There are numerous plant-parasitic nematodes in the world, but only a handful are responsible for the largest part of an estimated $157 billion in agricultural damage globally every year. Nematodes are small worms that burrow into plant roots and feed off living cells.

Now, Iowa State University researchers have contributed to the release of the annotated genome of one of the most destructive nematodes: Meloidogyne incognita -- the southern root-knot nematode, as reported recently in the journal Nature Biotechnology.

Sequencing the genome is a critical step toward comprehensively understanding how the organism works and may pave the way for research on ways to fight the pest.

"This is considered to be one of, if not the most important plant-parasitic nematode species across the world," said Thomas Baum, professor and chair of plant pathology and head of Iowa State University's contribution to the genome sequence project.

... more about:
»Genome »nematode »plant-parasitic »sequence

Root-knot nematodes are so important because they can be found almost anywhere in the world on almost any plant, he said. Nematodes are the most abundant animals on earth.

"Many of the nematodes that are really bad pathogens are very specialized on which plant they attack," said Baum. "This nematode has a huge host range. For us nematologists, it is very interesting and challenging to study."

Because the pest is so widespread, many nematologists around the world were eager to help with the project. The lead investigator was Pierre Abad of the Insitut National de Recherche Agronomiquea, a French research group, with help from researchers in Belgium, Holland, Great Britain, Switzerland, and Iowa State University and North Carolina State University in the US.

"Because it is such a worldwide problem, people are eager to contribute," Baum said. "Also, because it is the first plant-parasitic nematode to have its sequence released, people are very excited about it."

Chemical treatments for killing nematodes, called nematicides, are dangerous to humans and other animals so they've been restricted in use for decades. Technology for controlling nematodes has advanced little in the past three decades.

Besides being a devastating crop pathogen, Meloidogyne incognita has some remarkable biological adaptations that make it a fascinating organism to study.

Baum said that the sex of the tiny worms, or better the lack thereof is very intriguing. Only females reproduce and they do so without having sex, so it remains a puzzle why males of the species even exist. And since the females don't mate to reproduce, the offspring should be genetically identical to the mother -- like a clone - but they aren't. And as the offspring matures into males or females, some start as females and then change into males.

Baum's group included postdoctoral researcher Tarek Hewezi and assistant scientist Tom Maier from Iowa State. The three worked on a specific part of the genome and performed manual annotations of genes. Professor Davis and postdoctoral research associate, Noureddine Hamamouch, used the current known parasitism genes to identify the full suite or predicted parasitism genes in the root-knot nematode genome.

With this sequencing done, Baum thinks researchers can now try to understand this nematode. He also cautions that finding ways to control this pest will be a long process.

"For any effort in which you want to control the nematode, this is a great resource," Baum said. "But having the genome is only one of many steps in the right direction. Albeit, a very big one!"

Thomas Baum | EurekAlert!
Further information:

Further reports about: Genome nematode plant-parasitic sequence

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>