Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ISU researchers develop hybrid protein tools for gene cutting and editing

31.08.2010
An Iowa State University team of researchers has developed a type of hybrid proteins that can make double-strand DNA breaks at specific sites in living cells, possibly leading to better gene replacement and gene editing therapies.

Bing Yang, assistant professor of genetics, development and cell biology, and his colleagues developed the hybrid protein by joining parts of two different bacterial proteins. One is called a TAL effector, which functions to find the specific site on the gene that needs to be cut, and the other is an enzyme called a nuclease that cuts the DNA strands.

Yang hopes the research will lead to the ability to modify genomes by cutting out defective or undesirable parts of DNA, or by replacing defective or undesirable gene segments with a functioning piece of replacement DNA - a process called homologous recombination.

Yang says that his hybrid proteins can be constructed to locate specific segments of the DNA in any type of organism.

"This breakthrough could eventually make it possible to efficiently modify plant, animal and even human genomes," said Yang. "It should be effective in a range of organisms."

The proteins work by binding onto the specific segment of DNA the researcher wants to change. Yang's proteins do this by reading the DNA sequence and finding the specific area to be cut.

Once the protein binds onto the DNA at the correct spot, the other half of Yang's protein then cuts the double-stranded DNA.

Bad or undesirable DNA can be resected (removed) and good or more desirable DNA can be introduced. When the DNA heals, the good DNA is included in the gene.

Yang started his research about a year ago after seeing the results of research by Adam Bogdanove, ISU associate professor of plant pathology, showing that TAL effectors use a very straightforward code to bind to a specific DNA sequence.

This discovery allowed Yang to predict exactly where the TAL effector nuclease will bind on the DNA to make the cut.

Another study had similar results.

The concept has also been proven by Bogdanove and Dan Voytas, collaborator in genetics, development and cell biology at Iowa State, and director of the Center for Genome Engineering at the University of Minnesota, Twin Cities.

The TAL effector-nuclease approach improves on tools currently available for genome modification. It should be faster and less expensive to make TAL effector nucleases, and easier to design them to recognize specific DNA sequences, according to Yang.

Yang's findings recently appeared in the online version of the journal Nucleic Acids Research. Voytas' and Bogdanove's study also appeared recently in the journal Genetics.

Voytas and Bogdanove were also able to show that the TAL effector part of the hybrid protein can be customized to target new DNA sequences.

Yang's team includes Ting Li, graduate assistant; Sheng Huang, post doctoral researcher; David Wright, associate scientist; and Martin Spalding, professor and chair; all of the genetics, development and cell biology department at Iowa State; Wen Zhi Jiang, research associate; and Donald Weeks, professor; both from the University of Nebraska, Lincoln.

Bing Yang | EurekAlert!
Further information:
http://www.iastate.edu

Further reports about: Bogdanove DNA DNA sequence DNA strand ISU Iowa TAL Yang bacterial protein cell biology human genome

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>