Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ISU research leads to understanding of how crops deal with stress – yield’s biggest enemy

26.04.2011
Like people, plants experience stress. And also, like people, the response to that stress can determine success.

People can exercise, or rest, or talk about the problem.

For plants, ways to deal with stress are internal. And ISU researchers are trying to understand how they do it.

Stephen Howell is a professor of genetics, development and cell biology and former director of the Plant Sciences Institute at ISU. His research is featured in the current issue of the journal Proceedings of the National Academy of Science.

"We've discovered a new arm of the pathway by which plants activate a response to environmental stress," he said.

Adverse environmental conditions, such as drought, flood, heat and other stresses, affect yield more than crop pests and diseases. Finding a way to maintain high yields for plants under stress is a goal of plant breeders and other agriculture stakeholders, said Howell.

"These are environmental stresses that the farmers can't control," Howell said. "They are acts of nature. And now seed companies are interested in trying to equip plants with the ability to tolerate stress."

Plant cells produce proteins and ship them to different parts of the cell. During production and shipment, these proteins move through an area of the cell called the endoplasmic reticulum (ER).

Under normal conditions, these proteins are folded into their normal, healthy three-dimensional structures as they are produced.

When a plant is under stress, its cells produce poorly folded or unfolded proteins. Inside the ER, a built-in, quality-control system senses this and "sets off an alarm in the cell," said Howell.

In response to the alarm, another protein (IRE1) cuts apart an important RNA molecule, but then splices it back together to create a different sequence.

This cut-and-splice event activates a cascade of stress response genes whose products bring about internal defensive measures that help the plant survive.

"As it turns out, responses that are activated under stress conditions actually inhibit the growth of plants," said Howell. "This allows them to conserve their energy to survive the stress conditions."

For plants in the wild, this response is a survival tactic, he said.

In production agriculture crops, however, these responses reduce yields.

"You don't want crop plants to [stop growing]," Howell said. "You want them to continue to grow and produce even though they are under stress."

With the new understanding of this stress response pathway, Howell says, the next step may be to silence the alarm system.

"What may be important is to disable some of these stress responses," said Howell. "That may make the plant be more productive under stress conditions."

Howell's research team included Yan Deng and Renu Srivastava, both of the Plant Sciences Institute, Ames; Sabrina Humbert and Steven Rothstein, both of University of Guelph, Canada; and Jian-Xiang Liu formerly of the Plant Sciences Institute and now a faculty member at Fudan University, China.

Howell is currently on leave from ISU and is director of the Division of Molecular and Cellular Biosciences for the National Science Foundation in Washington, D.C.

Stephen Howell | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>