Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ISU research leads to understanding of how crops deal with stress – yield’s biggest enemy

26.04.2011
Like people, plants experience stress. And also, like people, the response to that stress can determine success.

People can exercise, or rest, or talk about the problem.

For plants, ways to deal with stress are internal. And ISU researchers are trying to understand how they do it.

Stephen Howell is a professor of genetics, development and cell biology and former director of the Plant Sciences Institute at ISU. His research is featured in the current issue of the journal Proceedings of the National Academy of Science.

"We've discovered a new arm of the pathway by which plants activate a response to environmental stress," he said.

Adverse environmental conditions, such as drought, flood, heat and other stresses, affect yield more than crop pests and diseases. Finding a way to maintain high yields for plants under stress is a goal of plant breeders and other agriculture stakeholders, said Howell.

"These are environmental stresses that the farmers can't control," Howell said. "They are acts of nature. And now seed companies are interested in trying to equip plants with the ability to tolerate stress."

Plant cells produce proteins and ship them to different parts of the cell. During production and shipment, these proteins move through an area of the cell called the endoplasmic reticulum (ER).

Under normal conditions, these proteins are folded into their normal, healthy three-dimensional structures as they are produced.

When a plant is under stress, its cells produce poorly folded or unfolded proteins. Inside the ER, a built-in, quality-control system senses this and "sets off an alarm in the cell," said Howell.

In response to the alarm, another protein (IRE1) cuts apart an important RNA molecule, but then splices it back together to create a different sequence.

This cut-and-splice event activates a cascade of stress response genes whose products bring about internal defensive measures that help the plant survive.

"As it turns out, responses that are activated under stress conditions actually inhibit the growth of plants," said Howell. "This allows them to conserve their energy to survive the stress conditions."

For plants in the wild, this response is a survival tactic, he said.

In production agriculture crops, however, these responses reduce yields.

"You don't want crop plants to [stop growing]," Howell said. "You want them to continue to grow and produce even though they are under stress."

With the new understanding of this stress response pathway, Howell says, the next step may be to silence the alarm system.

"What may be important is to disable some of these stress responses," said Howell. "That may make the plant be more productive under stress conditions."

Howell's research team included Yan Deng and Renu Srivastava, both of the Plant Sciences Institute, Ames; Sabrina Humbert and Steven Rothstein, both of University of Guelph, Canada; and Jian-Xiang Liu formerly of the Plant Sciences Institute and now a faculty member at Fudan University, China.

Howell is currently on leave from ISU and is director of the Division of Molecular and Cellular Biosciences for the National Science Foundation in Washington, D.C.

Stephen Howell | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>