Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ISU plant pathologist updates science community on groundbreaking research

In the two years since Iowa State University's Adam Bogdanove, along with student Matthew Moscou, published their groundbreaking gene research in the cover story of the journal Science, researchers around the world have built on those findings to explore further breakthroughs.

Science has published another article by Bogdanove in the Sept. 30 issue that updates the scientific community on where the research has been since 2009 and where it is heading.

"In the past two years, an extraordinary number of things have happened in this field," said Bogdanove, a professor of plant pathology. "This is really pretty revolutionary."

Bogdanove's research published in 2009 uncovered how so-called TAL (Transcription Activator-like) effector proteins bind to different DNA locations, and how particular amino acids in each protein determine those locations -- called binding sites -- in a very straightforward way.

Knowing this, scientists are using the proteins to target and manipulate specific genes, something that was much more difficult to accomplish prior to this research.

That could lead to breakthroughs in understanding gene function and improving traits in livestock and plants, and even treating human genetic disorders, according to Bogdanove.

Bogdanove says in the two years since his and Moscou's work was published, nearly two dozen research papers have been published using this discovery.

"We are so excited about the potential of these proteins. Just in the past six months they have been used successfully in model organisms such as yeast, zebrafish, and C. elegans (a type of worm used to study development), and even in human stem cells. There is some really innovative stuff going on," he said.

Model organisms are used to understand particular biological functions.

Bogdanove collaborated on this Science article with Dan Voytas, a former member of the Iowa State University faculty and now director of the Center for Genome Engineering at the University of Minnesota.

Bogdanove cautions in the article that the power of the technologies based on TAL effectors raises legal, sociological and ethical questions about how their use should be regulated, but says that it may be just a matter of a few years before these proteins see real application in areas such as crop improvement and human medicine.

Adam Bogdanove | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>