Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Isotopes and species protection

26.11.2010
Johannes Gutenberg University Mainz and international partners are to set up an innovative reference database for the identification of the origin of elephant ivory

Working in collaboration with the World Wide Fund for Nature (WWF) and the Bundesamt für Naturschutz (BfN, German Federal Agency for Nature Conservation), and with the support of the International Council for Game and Wildlife Conservation (CIC), a team of scientists at Johannes Gutenberg University Mainz is preparing an innovative reference database that allows the identification of the origin of elephant ivory.

By means of analysis of the isotope profile of samples of known geographic origin, it is possible to prepare an "isotope map" for this material and thus determine the original provenance of any piece of ivory. The project is thus not only making a worthwhile contribution towards the suppression of the illegal trade in ivory but is also helping to protect an endangered species.

Analysis of the levels of accumulation of isotopes of specific elements provides reliable evidence of the origin of materials such as ivory and bone fragments. Isotopes are atoms of one and the same chemical element that differ in terms of their atomic mass. Organic materials derived from creatures that live in specific biotopes are characterized by the presence and the relative concentrations of certain isotopes of chemical elements. The element carbon, for example, consists in its natural state of three isotopes with different atomic masses, namely 12C, 13C, and 14C. Low concentrations of the heavy carbon isotope 13C indicate that the material sample originates from a thickly wooded habitat, while high levels are indicative of a savanna landscape.

Such factors are used for the purpose of so-called provenance analysis. Living beings take up elements with their nutrition that have an isotope signature characteristic of their more immediate living environment; they then incorporate these elements into their own body substances, such as dental enamel. The analysis of the isotope profile of such materials can thus provide evidence of the precise origin of the sample in question. Although previous research had shown that isotope analysis can be used to determine the provenance of ivory, no attempts have yet been undertaken to prepare the detailed isotope maps that would enable the relative geographic origin of a particular ivory item to be pinpointed.

Since 1995, the International Union for Conservation of Nature (IUCN) has regularly been conducting surveys of and publishing status reports on the numbers and distribution range of elephants in Africa. In addition to information on the geographical spread of these animals, the reports also contain data on the geology, vegetation, and rainfall in the regions in question, providing the basis for the development of a reference database. Historical ivory items of known or "georeferenced" origin from collections worldwide are being used to extend the database: The isotope signature of a sample is analyzed and its topographic provenance defined, while geostatistical techniques such as kriging are used for plotting purposes. The resultant isotope maps can be used to determine the region of origin of any sample of ivory.

Trade as necessity - the necessity of trade

The international trade in ivory has resulted in a dramatic decline in animal numbers in many African countries since the 1980s. In order to protect Africa's elephant population and as a result of an international accord, the African elephant was added in 1989 to Appendix I of the Washington Convention on International Trade in Endangered Species (CITES), and all commercial trade in ivory was thus banned. Thanks to the imposition of strict trade controls and effective protection measures, elephant populations in some African countries have significantly recovered. In countries such as Botswana, Namibia, Zimbabwe, and South Africa, limited trade in ivory products is permitted, although stringent restrictions are imposed. But the countries of the southern part of Africa in particular are increasingly arguing that they should be allowed to trade freely in ivory from the stocks they already hold so that they can raise the finances they urgently need for nature conservancy measures. Unfortunately, this method of generating income would not be without its problems: If free trade is permitted, it would become increasingly difficult to differentiate between legal and illegal ivory at the point of sale and the legalized trade could be used as a cover for ivory smuggling and poaching. Isotope maps provide an effective way of resolving this dilemma.

Working under the aegis of the German Federal Agency for Nature Conservation (BfN), the International Center of Ivory Studies (INCENTIVS) at the Institute for Geosciences at Johannes Gutenberg University Mainz is collaborating with the WWF in this joint project. The project is being partly financed by Germany's Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit), and is receiving the active support of the International Council for Game and Wildlife Conservation (CIC).

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/13938.php

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>