Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the tasty blue crab's natural range creeping north?

09.03.2015

David Johnson was standing in a salt marsh tidal creek north of Boston, Mass., when he scooped up a blue crab, Callinectes sapidus, 80 miles north of its native range. The northern migration of this commercially important species, Johnson says, could be yet another sign of climate change. Then a scientist at the Marine Biological Laboratory (MBL) Ecosystems Center, Johnson recently published his observations in the Journal of Crustacean Biology.

The historic northern limit of this species of crab (also called Atlantic blue or Chesapeake blue) is Cape Cod, Mass. They typically weren't found in the Gulf of Maine due to its cold Canadian waters.


This is a blue crab, Callinectes sapidus, caught in Ipswich, Mass., 80 miles north of its historical native range.

Credit: David Samuel Johnson

From 2012 to 2014, however, scientists and resource managers observed blue crabs as far north as northern Maine and Nova Scotia, Canada. Johnson hypothesizes that warmer ocean temperatures in 2012 and 2013, which were 1.3°C higher than the previous decade's average, allowed the crabs to move north.

"Climate change is lowering the thermal barriers that kept species from moving toward the poles," he says. "Climate change presents a challenge not only for ecologists, but for fisheries managers as commercially important species shift their ranges in response to warming oceans."

Ephemeral populations of blue crabs have been documented previously in the Gulf of Maine. Johnson notes that in the 1950s blue crabs were observed in the gulf during a time of warmer waters. But once the waters returned to average temperatures, the crabs disappeared.

"It's too early to determine if the current blue crab population in the Gulf of Maine is permanent or ephemeral," Johnson says. "However, models predict an increasing warming of the world's oceans and recent observations of blue crabs may be a crystal ball into the future ecology of the Gulf of Maine."

Other researchers have documented the northern movement of other commercially important species in northeastern United States such as lobsters, hake and flounder. Johnson's work, however, is the first to document the movement of a commercially important species into the Gulf of Maine.

This is the second crustacean Johnson has documented as expanding into the Gulf of Maine. In 2014 he published his findings on the rapid expansion of the fiddler crab, Uca pugnax, into the gulf. "As the world's oceans continue to warm, we will continue to see climate-driven range expansions," he predicts.

###

Johnson, now an adjunct assistant scientist at the MBL, recently joined the Virginia Institute of Marine Science as an assistant professor.

Citation:

Johnson DS (2015) The savory swimmer swims north: a northern range extension of the blue crab Callinectes sapidus? J. Crustacean Biology 35: 105-110.

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery and improving the human condition through research and education in biology, biomedicine, and environmental science. Founded in Woods Hole, Massachusetts, in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Media Contact

Diana Kenney
dkenney@mbl.edu
508-289-7139

 @mblscience

http://www.mbl.edu

Diana Kenney | EurekAlert!

More articles from Life Sciences:

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

nachricht Party discipline for jumping genes
22.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>