Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State University researcher examines mosquito genes for new disease responses

01.10.2010
An Iowa State University researcher searched for new genes that are turned on during infection in a type of mosquito that is not only a pest, but transmits disease-causing pathogens.

Lyric Bartholomay, assistant professor of entomology, along with colleagues from around the world, infected the common southern house mosquito (Culex quinquefasciatus) with various pathogens to see which mosquito genes are activated in response to the infection.

Bartholomay is the first author on the paper, "Pathogenomics of Culex quinquefasciatus and Meta-Analysis of Infection Responses to Diverse Pathogens," to be published in the Oct. 1 issue of the journal Science.

The southern house mosquito is the third of the three most important mosquito disease carriers to have its genome sequenced. The first was an African mosquito (Anopheles gambiae) that transmits malaria parasites. Malaria infects 250 to 500 million people each year and kills nearly one million people annually, mostly young children in sub-Saharan Africa. The second was a tropical mosquito (Aedes aegypti) that carries yellow and dengue fever viruses.

Culex quinquefasciatus applying its trade. Courtesy photo by James Gathan
The southern house mosquito is common to many areas of the United States and around the world. It feeds on blood from birds, livestock and humans, and transmits a wide variety of deadly and debilitating human and veterinary pathogens. In addition to transmitting the West Nile virus, the mosquito can carry the St. Louis encephalitis and the microscopic roundworm that causes lymphatic filariasis - a debilitating tropical disease that affects up to 40 million people every year.

Bartholomay participated in cataloging the infection-response genes for Aedes aegypti in a manuscript published in 2007. She was chosen to be first author of the current Science paper because she has experience describing the immune responses in the northern house mosquito (Culex pipiens).

In the research, mosquitoes were infected with viruses, worms and bacteria. The genes of the mosquitoes were monitored to see which changed during the response to infection and therefore could ward off disease.

"What we're trying to do is broaden our understanding of infection response genes beyond those that we expect to be there," said Bartholomay.

"We took a two-pronged approach to understanding infection responses," she added. "First, we scoured the genome sequence looking for those immunity genes that the mosquitoes can use to respond to an infection. Then, we looked at what genes comprise broad spectrum and specific immune responses.

"We then took it one step further and compared the infection responses in Culex quinquefasciatus to similar infections in Aedes aegypti and Anopheles gambiae."

Bartholomay noted that the functions of many of the genes revealed in this analysis are still unknown, but as more is discovered about the functions of the genes, it could provide the first steps to controlling mosquito-borne diseases.

Bartholomay also worked with colleagues to analyze the mosquito's genome, as reported in a companion paper that will also be published in the current issue of Science.

Lyric Bartholomay | EurekAlert!
Further information:
http://www.iastate.edu
http://www.news.iastate.edu/news/2010/sep/lyricSci

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>