Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State chemists discover method to create high-value chemicals from biomass

03.09.2010
Iowa State University researchers have found a way to produce high-value chemicals such as ethylene glycol and propylene glycol from biomass rather than petroleum sources.

Walter Trahanovsky, an Iowa State professor of chemistry who likes to write out the chemical structures of compounds when he talks about his science, was looking to produce sugar derivatives from cellulose and other forms of biomass using high-temperature chemistry. And so he and members of his research group studied the reactions of cellulosic materials in alcohols at high temperatures and pressures.

They analyzed the products of the reactions using nuclear magnetic resonance spectroscopy. Early experiments produced the expected sugar derivatives. Additional work, however, clearly revealed significant yields of ethylene glycol and propylene glycol.

"It was a real surprise," Trahanovsky said. "These products were unexpected, so we never looked for them. But they were always there."

Uses for ethylene glycol include auto antifreeze, polyester fabrics and plastic bottles. Propylene glycol has many uses, including as a food additive, a solvent in pharmaceuticals, a moisturizer in cosmetics and as a coolant in liquid cooling systems.

Conversion of biomass to fuels and other chemicals can require strong acids or other harsh and expensive compounds. These processes also generate chemical wastes that have to be collected for safe disposal.

The Iowa State researchers say they have found a technology that is simpler yet effective and also better for the environment.

"There is potential here," said Trahanovsky. "It's not a wild dream to think this could be developed into a practical process."

The biomass conversion process is based on the chemistry of supercritical fluids, fluids that are heated under pressure until their liquid and gas phases merge. In this case, Trahanovsky said the key results are significant yields of ethylene glycol, propylene glycol and other chemicals with low molecular weights. He said the process also produces alkyl glucosides and levoglucosan that can be converted into glucose for ethanol production or other uses.

All this happens without the use of any expensive reagents such as acids, enzymes, catalysts or hydrogen gas, Trahanovsky said. The process even works when there are impurities in the biomass.

The Iowa State University Research Foundation Inc. has filed for a patent of the technology.

The research has been supported by grants from the Iowa Energy Center. Other Iowa State researchers who have contributed to the project include Ronald Holtan, a postdoctoral research associate in chemistry; Norm Olson, the project manager of the Iowa Energy Center's BECON facility near Nevada; Joseph Marshall, a former graduate student; and Alyse Hurd and Kyle Quasdorf, former undergraduate students.

Trahanovsky said the research team is still working to develop and improve the conversion technology.

And he does think the technology could be useful to industry.

"The starting materials for this are cheap," Trahanovsky said. "And the products are reasonably high-value chemicals."

Walter Trahanovsky | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>