Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State chemists help astronauts make sure their drinking water is clean

15.09.2011
Bob Lipert held up a syringe, attached a plastic cartridge and demonstrated how chemistry developed at Iowa State University is helping astronauts and cosmonauts make sure they have safe drinking water at the International Space Station.

Each cartridge contains a thin, one-centimeter disk that's loaded with chemistry, said Lipert, an associate scientist with Iowa State's Institute for Physical Research and Technology and an associate of the U.S. Department of Energy's Ames Laboratory.

Run a 10-milliliter water sample through a disk and it will change color in the presence of iodine, which NASA uses to inhibit the growth of microorganisms in the drinking water stored at the space station. The disk will turn from white to yellow and, as it's exposed to higher concentrations of iodine, it will turn to orange and finally to a rust color.

A handheld device - a diffuse reflectance spectrometer - can read the disk's color changes and precisely measure the concentration of molecular iodine, or I©ü. The whole process is called colorimetric solid phase extraction.

Starting in late September, Lipert said astronauts at the space station will use new developments and procedures that convert all forms of iodine in the water samples to molecular iodine. That will give astronauts a more precise reading of total iodine in their drinking water. Lipert said they'll know in real time whether there's too much, too little or just enough iodine in the water.

Disks loaded with different chemistry can also measure and record concentrations of silver, which the Russian Federal Space Agency uses as a biocide in its water supply at the space station. As silver concentrations increase, disks turn from yellow to purple.

Before Iowa State chemists helped develop the new tests, the only way to test the space station's drinking water was to send samples back to earth.

"We figured out the chemistry and put it into a form that can be used in space," Lipert said. "We also took lab techniques and simplified them as much as possible. And we developed procedures that can be used in the absence of gravity."

The result is a quick, accurate test that doesn't use up much drinking water or much astronaut time.

"What's neat about what we came up with is that all the chemistry we need to do can be accomplished in about one minute per sample using a little, 1-centimeter cartridge," Lipert said.

It took some work to develop the test's chemistry and procedures. The NASA-sponsored project began more than a decade ago under the direction of Marc Porter, a former Iowa State professor of chemistry and chemical and biological engineering who is now a USTAR Professor at the University of Utah in Salt Lake City. Lipert has worked on the project since 2000.

Other Iowa State researchers who have worked on the project include Jim Fritz, Distinguished Professor Emeritus of Liberal Arts and Sciences; former post-doctoral researchers Matteo Arena and Neil Dias; and former graduate students April Hill, Daniel Gazda, John Nordling, Lisa Ponton and Cherry Shih. Lorraine Siperko, a research scientist at the University of Utah, has also worked on the project.

The university researchers have also collaborated with the Wyle Integrated Science and Engineering Group, a NASA subcontractor that helped develop and certify the water-testing hardware that has been deployed on the space station.

After a series of successful space tests in 2009 and '10, the researchers' water-testing equipment is now certified operational hardware and is part of the space station's environmental monitoring toolbox.

Lipert said the testing technology can also be a useful tool in many earthbound applications, including forensics tests for drugs, environmental tests for heavy metals and water quality tests for pesticides or herbicides.

"This is a very flexible platform," he said. "You just have to work out the chemistry for each substance you're analyzing."

Bob Lipert | EurekAlert!
Further information:
http://www.iastate.edu/

Further reports about: NASA Science TV Space drinking water space station

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>