Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State chemists help astronauts make sure their drinking water is clean

15.09.2011
Bob Lipert held up a syringe, attached a plastic cartridge and demonstrated how chemistry developed at Iowa State University is helping astronauts and cosmonauts make sure they have safe drinking water at the International Space Station.

Each cartridge contains a thin, one-centimeter disk that's loaded with chemistry, said Lipert, an associate scientist with Iowa State's Institute for Physical Research and Technology and an associate of the U.S. Department of Energy's Ames Laboratory.

Run a 10-milliliter water sample through a disk and it will change color in the presence of iodine, which NASA uses to inhibit the growth of microorganisms in the drinking water stored at the space station. The disk will turn from white to yellow and, as it's exposed to higher concentrations of iodine, it will turn to orange and finally to a rust color.

A handheld device - a diffuse reflectance spectrometer - can read the disk's color changes and precisely measure the concentration of molecular iodine, or I©ü. The whole process is called colorimetric solid phase extraction.

Starting in late September, Lipert said astronauts at the space station will use new developments and procedures that convert all forms of iodine in the water samples to molecular iodine. That will give astronauts a more precise reading of total iodine in their drinking water. Lipert said they'll know in real time whether there's too much, too little or just enough iodine in the water.

Disks loaded with different chemistry can also measure and record concentrations of silver, which the Russian Federal Space Agency uses as a biocide in its water supply at the space station. As silver concentrations increase, disks turn from yellow to purple.

Before Iowa State chemists helped develop the new tests, the only way to test the space station's drinking water was to send samples back to earth.

"We figured out the chemistry and put it into a form that can be used in space," Lipert said. "We also took lab techniques and simplified them as much as possible. And we developed procedures that can be used in the absence of gravity."

The result is a quick, accurate test that doesn't use up much drinking water or much astronaut time.

"What's neat about what we came up with is that all the chemistry we need to do can be accomplished in about one minute per sample using a little, 1-centimeter cartridge," Lipert said.

It took some work to develop the test's chemistry and procedures. The NASA-sponsored project began more than a decade ago under the direction of Marc Porter, a former Iowa State professor of chemistry and chemical and biological engineering who is now a USTAR Professor at the University of Utah in Salt Lake City. Lipert has worked on the project since 2000.

Other Iowa State researchers who have worked on the project include Jim Fritz, Distinguished Professor Emeritus of Liberal Arts and Sciences; former post-doctoral researchers Matteo Arena and Neil Dias; and former graduate students April Hill, Daniel Gazda, John Nordling, Lisa Ponton and Cherry Shih. Lorraine Siperko, a research scientist at the University of Utah, has also worked on the project.

The university researchers have also collaborated with the Wyle Integrated Science and Engineering Group, a NASA subcontractor that helped develop and certify the water-testing hardware that has been deployed on the space station.

After a series of successful space tests in 2009 and '10, the researchers' water-testing equipment is now certified operational hardware and is part of the space station's environmental monitoring toolbox.

Lipert said the testing technology can also be a useful tool in many earthbound applications, including forensics tests for drugs, environmental tests for heavy metals and water quality tests for pesticides or herbicides.

"This is a very flexible platform," he said. "You just have to work out the chemistry for each substance you're analyzing."

Bob Lipert | EurekAlert!
Further information:
http://www.iastate.edu/

Further reports about: NASA Science TV Space drinking water space station

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>