Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State chemist designs new polymer structures for use as 'plastic electronics'

29.04.2011
Iowa State University's Malika Jeffries-EL says she's studying doing structure-property studies so she can teach old polymers new tricks.

Those tricks improve the properties of certain organic polymers that mimic the properties of traditional inorganic semiconductors and could make the polymers very useful in organic solar cells, light-emitting diodes and thin-film transistors.

Conductive polymers date back to the late 1970s when researchers Alan Heeger, Alan MacDiarmid and Hideki Shirakawa discovered that plastics, with certain arrangements of atoms, can conduct electricity. The three were awarded the 2000 Nobel Prize in Chemistry for the discovery.

Jeffries-EL, an Iowa State assistant professor of chemistry, is working with a post-doctoral researcher and nine doctoral students to move the field forward by studying the relationship between polymer structures and the electronic, physical and optical properties of the materials. They're also looking for ways to synthesize the polymers without the use of harsh acids and temperatures by making them soluble in organic solvents.

The building blocks of their work are a variety of benzobisazoles, molecules well suited for electrical applications because they efficiently transport electrons, are stable at high temperatures and can absorb photons.

And if the polymers are lacking in any of those properties, Jeffries-EL and her research group can do some chemical restructuring.

"With these polymers, if you don't have the properties you need, you can go back and change the wheel," Jeffries-EL said. "You can change the chemical synthesis and produce what's missing."

That, she said, doesn't work with silicon and other inorganic materials for semiconductors: "Silicon is silicon. Elements are constant."

The National Science Foundation is supporting Jeffries-EL's polymer research with a five-year, $486,250 Faculty Early Career Development grant. She also has support from the Iowa Power Fund (a state program that supports energy innovation and independence) to apply organic semiconductor technology to solar cells.

The research group is seeing some results, including peer-reviewed papers over the past two years in Physical Chemistry Chemical Physics, Macromolecules, the Journal of Polymer Science Part A: Polymer Chemistry, and the Journal of Organic Chemistry.

"This research is really about fundamental science," Jeffries-EL said. "We're studying the relationships between structure and material properties. Once we have a polymer with a certain set of properties, what can we do?"

She and her research group are turning to the molecules for answers.

"In order to realize the full potential of these materials, they must be engineered at the molecular level, allowing for optimization of materials properties, leading to enhanced performance in a variety of applications," Jeffries-EL wrote in a research summary. "As an organic chemist, my approach to materials begins with small molecules.

Malika Jeffries-EL | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>