Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State, Ames Laboratory scientists advance the understanding of the big getting bigger

05.11.2010
Patricia Thiel of Iowa State University and the Ames Laboratory put a box of tissues to the right, a stack of coasters to the middle and a trinket box to the left.

"Nature," she said of her table-top illustration, "doesn't want lots of little things." So Thiel grabbed the smaller things and slid them into a single pile next to the bigger tissue box. "Nature wants one big thing all together, like this."

Thiel, an Iowa State Distinguished Professor of Chemistry and a faculty scientist for the U.S. Department of Energy's Ames Laboratory, and James Evans, an Iowa State professor of physics and astronomy and a faculty scientist for the Ames Laboratory, describe that process in the Oct. 29 issue of the journal Science.

The paper, "A Little Chemistry Helps the Big Get Bigger," is in the journal's Perspectives section. It describes a process called coarsening. That's when "a group of objects of different sizes transforms into fewer objects with larger average size, such that 'the big get bigger,'" says the paper. Examples of the process include the geologic formation of gemstones, the degradation of pharmaceutical suspensions and the manufacture of structural steels.

Thiel and Evans were invited to write the paper after Thiel delivered a talk at an American Chemical Society meeting about their studies of coarsening, an emerging field in surface chemistry.

Thiel worked with Mingmin Shen, a former Iowa State doctoral student who is now a post-doctoral research associate at Pacific Northwest National Laboratory in Richland, Wash., on the experimental side of the coarsening research. Evans worked with Da-Jiang Liu, an associate scientist at the Ames Laboratory, on the theoretical side of the project.

The researchers, with the support of grants from the National Science Foundation, have been using scanning tunneling microscope technology – an instrument that allows them to see individual atoms – to study how coarsening happens on the surface of objects.

They've studied nanoscale particles grown on the surface of silver and how adding sulfur can increase coarsening. They're trying to learn the mechanism of that increase and understand the nature of the messengers that move atoms during the coarsening process.

What Thiel and Evans are looking for is a general principle that explains what they call additive-enhanced coarsening. To do that, Thiel said they still need to collect and analyze data from more coarsening systems.

Evans said a better understanding of the coarsening process can help researchers develop small structures – including nanoscale technologies, catalysts or drug suspensions – that resist coarsening and are therefore more durable. A better understanding could also help researchers manipulate coarsening to develop structures with a very narrow distribution of particle sizes, something important to some nanotechnologies.

"When we're building something on a small scale, for it to be useful, it has to be robust, it has to survive," Evans said. "And one thing we're looking at is the stability of the very tiny structures that are crucial to nanoscale technologies."

Patricia Thiel | EurekAlert!
Further information:
http://www.ameslab.gov
http://www.iastate.edu/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>