Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State, Ames Lab researcher hunts for green catalysts

08.03.2011
L. Keith Woo is searching for cleaner, greener chemical reactions.

Woo, an Iowa State University professor of chemistry and an associate of the U.S. Department of Energy's Ames Laboratory, has studied catalysts and the chemical reactions they affect for more than 25 years. And these days, his focus is on green catalysis.

That, he said, is the search for catalysts that lead to more efficient chemical reactions. That could mean they promote reactions at lower pressures and temperatures. Or it could mean they promote reactions that create less waste. Or it could mean finding safer, cleaner alternatives to toxic or hazardous conditions, such as using water in place of organic solvents.

"We're trying to design, discover and optimize materials that will produce chemical reactions in a way that the energy barrier is lowered," Woo said. "We're doing fundamental, basic catalytic work."

And much of that work is inspired by biology.

In one project, Woo and his research group are studying how iron porphyrins (the heme in the hemoglobin of red blood cells) can be used for various catalytic applications. Iron porphyrins are the active sites in a variety of the enzymes that create reactions and processes within a cell. Most of the iron porphyrin reactions involve oxidation and electron transfer reactions.

Because the iron porphyrins of biology have evolved into highly specialized catalysts, Woo and his research group are studying how they can be used synthetically with the goal of developing catalysts that influence a broader range of reactions.

"We've found porphyrins are capable of doing many reactions – often as well, or better, or cheaper than other catalysts," Woo said.

Another project is using combinatorial techniques to accelerate the development, production and optimization of catalysts. Woo and his research group are using molecular biology to quickly screen a massive library of DNA molecules for catalyst identification and development. The goal is to create water-soluble catalysts for organic reactions.

"Combinatorial approaches such as these have been applied to drug design, but their use in transition metal catalyst development is in its infancy," Woo wrote in a summary of the project.

A third project is looking for catalysts that allow greener production of lactams, which are compounds used in the production of solvents, nylons and other polymers. Commercial lactam production traditionally uses harsh reagents and conditions, such as sulfuric acid and high temperatures, and also creates significant wastes.

Woo, in collaboration with Robert Angelici, a Distinguished Professor Emeritus of Chemistry, has found a gold-based catalyst that eliminates the need for the acid and high pressure and also eliminates the wastes. The Iowa State Research Foundation Inc. is seeking a patent on the technology.

And, in a fourth project, Woo is working to understand the chemistry behind the chemical reactions that create bio-oil from the fast pyrolysis of biomass. Fast pyrolysis quickly heats biomass (such as corn stalks and leaves) in the absence of oxygen to produce a liquid bio-oil that can be used to manufacture fuels and chemicals.

Woo's projects are supported by grants from the National Science Foundation, the U.S. Department of Energy, Iowa State's Institute for Physical Research and Technology, Iowa State's Bioeconomy Institute, and the National Science Foundation Engineering Research Center for Biorenewable Chemicals based at Iowa State. Woo's research team includes post-doctoral researcher Wenya Lu and doctoral students B.J. Anding, Taiwo Dairo, Erik Klobukowski and Gina Roberts.

Sit down with Woo and he'll call up slide after slide of the chemical equations that describe chemical reactions.

And before long he's describing how catalysts are discovered these days.

"The traditional way to develop catalysts was very Edisonian – one experiment at a time," Woo said. "It was all by trial and error."

Now, with high-throughput approaches, Woo said his research group is able to quickly test a reaction using one hundred trillion different catalysts.

And that, Woo said, is "helping us find less expensive and more environmentally friendly materials and conditions to perform these catalytic reactions."

L. Keith Woo | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Cloud Formation: How Feldspar Acts as Ice Nucleus
09.12.2016 | Karlsruher Institut für Technologie

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>