Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State, Ames Lab chemists aid study of mutated plants that may be better for biofuels

29.02.2012
Genetic mutations to cellulose in plants could improve the conversion of cellulosic biomass into biofuels, according to a research team that included two Iowa State University chemists.

The team recently published its findings in the online early edition of the Proceedings of the National Academy of Sciences. Mei Hong, an Iowa State professor of chemistry and an associate of the U.S. Department of Energy's Ames Laboratory, and Tuo Wang, an Iowa State graduate student in chemistry, contributed their expertise in solid-state nuclear magnetic resonance spectroscopy to the study.

The study was led by Seth DeBolt, an associate professor of horticulture at the University of Kentucky in Lexington. Chris Somerville, the Philomathia Professor of Alternative Energy and director of the Energy Biosciences Institute at the University of California, Berkeley, is also a contributing author. The research project was supported by grants from the National Science Foundation and the U.S. Department of Energy.

Researchers studied Arabidopsis thaliana, a common model plant in research studies, and its cellulose synthase membrane complex that produces the microfibrils of cellulose that surround all plant cells and form the basic structure of plant cell walls.

These ribbons of cellulose are made of crystallized sugars. The crystal structure makes it difficult for enzymes to break down the cellulose to the sugars that can be fermented into alcohol for biofuels. And so DeBolt assembled a research team to see if genetic mutations in the plant membrane complex could produce what the researchers have called "wounded" cellulose that's not as crystalline and therefore easier to break down into sugar.

Hong, who had done previous studies of plant cell walls, used her lab's solid-state nuclear magnetic resonance technology to study the cell walls created by the mutated system. The goals were to collect as much information as possible about the molecular structure of the cell walls to see if mutations to the plants resulted in changes to the cellulose.

"We found that the crystalline cellulose content had decreased in the mutant cell walls," Hong said. "We can quantify the degree of change, and be very specific about the type of change."

The cellulose microfibrils in the mutant cell walls, for example, were thinner than those found in normal plants, Hong said. The studies also found an additional type of cellulose with an intermediate degree of crystal structure.

Hong said those findings suggest the genetic mutations did create differences in cellulose production and formation.

The study also reports the cellulose produced by the mutated plant could be more efficiently processed into the sugars necessary for biofuel production.

"What this work suggests, in very broad terms, is that it is possible to modify cellulose structure by genetic methods, so that potentially one can more easily extract cellulose from plants as energy sources," Hong said.

The research team's paper said developing techniques to modify the structure of plant cellulose in crops for better and easier conversion to fermentable sugars "could be transformative in a bio-based economy."

Mei Hong | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>