Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017

At the GSI Helmholtz Center for Heavy Ion Research was developed and tested a new method for a future treatment of cardiac arrhythmia. The research was carried by a team of biophysicists from GSI and physicians from Heidelberg University and the Mayo Clinic in the United States. Beams of carbon ions are already used successfully to treat tumors and could represent a non-invasive alternative to the present treatment with cardiac catheters or drugs.

Approximately 350,000 patients in Germany suffer from various forms of cardiac arrhythmia. The condition can lead to permanent damage as a result of stroke, or it may cause sudden heart failure. In forms of arrhythmia like atrial fibrillation or ventricular tachycardia, the heart departs from the regular rhythm set by a natural pacemaker, the sinoatrial node.


The treatment of cardiac arrhythmia with ions is studied at GSI. In the area of the Bragg peak (black) ions deposit their energy and the t

Picture: Blausen.com staff. CC BY 3.0, remix by GSI


The GSI accelerator facility was used to study the treatment possibilities for cardiac arrhythmia with ions.

Photo: A. Zschau, GSI Helmholtzzentrum für Schwerionenforschung

This type of arrhythmia is often treated with drugs or with a “catheter ablation,” in which catheters are guided through blood vessels to the heart, and certain tissue there is selectively destroyed. Based on this principle, ions from the particle accelerator could one day be used to perform a treatment without catheters. Scientists have been able to show that high-energy carbon ions can be used in a non-invasive procedure to make specific changes to cardiac tissue that prevent the transmission of the electrical signal.

This procedure using carbon ions has now been studied for the first time in a feasibility study by scientists at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt in collaboration with physicians and scientists of the Mayo Clinic (Minnesota, U.S.), the Helmholtzzentrum Dresden-Rossendorf, Heidelberg University, the Friedrich Alexander University Erlangen-Nuremberg (FAU), the Heidelberg Ion-Beam Therapy Center and the University of Trento (Italy). The researchers have published their results in the journal Scientific Reports from the publishers of Nature.

After prior tests on cardiac cell cultures and beating heart preparations yielded promising results, the scientists developed an animal study. “The new method is a big step into the future, because for the first time, it allows us to perform this treatment with pinpoint accuracy but without any catheters at all,” says Dr. H. Immo Lehmann, a physician and scientist at the Mayo Clinic and one of the authors of the study. “The study showed that the method can be successfully used to change cardiac tissue in such a way as to permanently interrupt the propagation of disruptive impulses. Further detailed studies are needed, however, before the method can start to benefit patients,” says Dr. Christian Graeff, head of the Medical Physics research group at GSI.

The irradiation of tissue with carbon ions promises to be gentler and potentially also more effective than treatment with catheters. When the method is technically mature, the procedure will take only a few minutes, in contrast to the sometimes hours-long catheter operations. One crucial advantage is that the ions can penetrate to any desired depth. By contrast, since the left ventricular wall of the heart is especially thick, it is often not possible to effectively destroy tissue there with catheters, although this is precisely the spot at which patients suffering from severe forms of ventricular tachycardia must be treated.

“It is exciting that the carbon beam could work with surgical precision in particularly sensitive areas of the body,” says Paolo Giubellino, Scientific Managing Director of FAIR and GSI. “The wealth of experience regarding medical applications of ion beams here at GSI is the basis of this new, promising method of treatment. The knowledge regarding the biological effectiveness of carbon ions and the technological know-how for irradiating patients are indispensable for developing an idea like this to the point where it’s mature enough for a medical application. We’re proud that the first steps toward a new therapy have now been taken.”

In their study, the scientists were able to rely on many technologies originally developed for cancer treatment with scanned ions, which was carried out at GSI for the first time in 1997. This form of treatment has now become well established and has been used in thousands of patients worldwide. Further experiments are currently being planned so that the method can be put into practice at facilities such as the Heidelberg Ion-Beam Therapy Center.

Weitere Informationen:

https://www.gsi.de/en/start/news/details/2017/01/19/ion-treatments-for-cardiac-a...

Dr. Ingo Peter | idw - Informationsdienst Wissenschaft

Further reports about: GSI Ion Schwerionenforschung cardiac catheter tachycardia ventricular tachycardia

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>