Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigators Predict, Confirm How E. Coli Bacteria Hijack Cells’ Directional Mechanism

02.03.2012
Working in the emerging field of systems biology, UT Southwestern Medical Center researchers mathematically predicted how bacteria that cause food poisoning hijack a cell’s sense of direction and then confirmed those predictions in living cells.

The study proposed a new model to explain how mammalian cells establish the sense of direction necessary to move, as well as the mechanism that a disease-causing form of E. coli bacteria employ to hijack that ability.

Cells need to orient themselves for several basic processes, such as keeping biochemical reactions separated in space and, in the case of immune cells, pursuing pathogens. Importantly, disruption of the cell’s sense of direction often leads to human disease.

“This is a great example of scientists from different fields of research coming together to solve a complex and important biological problem,” said Dr. Neal Alto, assistant professor of microbiology and senior author of the study, published Feb. 17 in Cell.

Systems biology aims to discover and understand a “circuit theory” for biology – a set of powerful and predictive principles that will reveal how networks of biological components are wired to display the complex properties of living things. The rapidly emerging field requires experts in several scientific disciplines – including biology, physics, mathematics and computer science – to come together to create models of biological systems that consider both the individual parts and how these parts react to each other and to changes in their environment.

Scientists from UT Southwestern’s microbiology department and the newly expanded Cecil H. and Ida Green Comprehensive Center for Molecular, Computational and Systems Biology teamed up to examine the problem collaboratively. They initially conceived a mathematical model for their hypothesis of how the cell would respond during an E. coli-induced infection and then tested their computational predictions in living cells.

“Bacteria inject protein molecules into human cells with a needle-and-syringe action,” Dr. Alto said. “The human cell responds by producing a local actin-rich membrane protrusion at the spot where the bacteria attaches to the cell.”

For healthy cells to move normally, these actin polymers push against a cell’s membrane, protruding and propelling the cell in one direction or another. When E. coli molecules are injected, however, actin polymers rush to the site infection and help bacterial molecules both move within the cell and establish an internal site of infection.

Robert Orchard, graduate student of microbiology and the study’s lead author, said: “By asking ‘How does a bacterial pathogen from outside the cell regulate the host cells’ actin dynamics within the cell?’ we have uncovered a fundamentally new molecular circuit involved in mammalian cell polarity and bacterial infection. These findings provide new insight into the regulatory mechanisms that control both disease-causing agents and normal mammalian cell behavior.”

Other UT Southwestern researchers from the Green Center involved in the work were Dr. Steven Altschuler and Dr. Lani Wu, both associate professors of pharmacology; Dr. Gürol Süel, assistant professor of pharmacology; and Mark Kittisopikul, a student in the Medical Scientist Training Program.

The National Institutes of Health, the James S. McDonnell Foundation and The Welch Foundation supported the study. The researchers also received assistance from the UT Southwestern Live Cell Imaging Facility, which is supported in part by the National Cancer Institute.

This news release is available on our World Wide Web home page at
www.utsouthwestern.edu/home/news/index.html
To automatically receive news releases from UT Southwestern via email,
subscribe at www.utsouthwestern.edu/receivenews

Deborah Wormser | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>