Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigators Discover New Gene That Affects Clearance of Hepatitis C Virus

11.01.2013
Scientists have discovered a gene that interferes with the clearance of hepatitis C virus infection.

They also identified an inherited variant within this gene, Interferon Lambda 4 (IFNL4), that predicts how people respond to treatment for hepatitis C infection. The results of this study, by investigators at the National Cancer Institute (NCI), part of the NIH, and their collaborators at NIH and other institutions, were published online in Nature Genetics on Jan. 6, 2013.


The novel protein, IFNL4—stained in red—as expressed in primary human liver cells treated to mimic the effect of infection with Hepatitis C (left). The protein shows up only in carriers of the unfavorable allele (right).

Chronic infection with hepatitis C virus is a cause of liver cirrhosis and liver cancer. Up to 80 percent of people who are acutely infected with hepatitis C fail to clear the virus and develop chronic hepatitis C infection, and of these, approximately 5 percent develop liver cancer. Individuals of African ancestry do not respond as well to current treatments of hepatitis C infection compared to patients of European or Asian ancestry.

Previously, results from genome-wide association studies (GWAS) identified common inherited genetic markers that were associated with response to hepatitis C virus treatment and spontaneous clearance of the infection. Those markers are located on chromosome 19 near a known interferon gene, IFNL3 (IL28B). However, molecular investigations into IFNL3 did not explain the GWAS association with spontaneous virus clearance or treatment response. To find the new gene, the investigators used a technology involving RNA sequencing on human liver cells treated to mimic hepatitis C virus infection.

“By using RNA sequencing we looked outside the box to search for something beyond what was already known in this region. We hit the jackpot with the discovery of a new gene. It is possible that other important genes may be discovered using this approach,” said co-lead investigator Ludmila Prokunina-Olsson, Ph.D., of the Laboratory of Translational Genomics in NCI’s Division of Cancer Epidemiology and Genetics (DCEG).

The researchers found that the IFNL4 region harbors a variant that is found in two alternative forms. One form, called deltaG, results in a deletion in one of the four bases that comprise DNA. The change creates an alteration known as a frameshift, which produces the IFNL4 protein, while the form without the deletion does not produce IFNL4. By analyzing data from hepatitis C-infected African-Americans and European-Americans participating in clinical studies, the authors found that the presence of the IFNL4 protein is associated with poorer clearance and response to treatment than the form that does not produce IFNL4. The deletion variant is more common in people of African ancestry, which helps partially explain why African-Americans have a lower response to current hepatitis C treatments than patients of Asian and European ancestry.

“Our work fulfills several promises of the genomic era,” said NCI’s Thomas R. O’Brien, M.D., Infections and Immunoepidemiology Branch, DCEG. “One, a better understanding of biology; two, personalized medicine; and three, new potential treatments. We deliver immediately on the first two. We’ve identified a new gene that may help us better understand response to viral infection and the new genetic marker may transition to clinical practice because it predicts treatment outcome for African-American patients better than the current genetic test. For the third, the INFL4 protein may be used as a novel therapeutic target for hepatitis C virus infection, and possibly other diseases.”

The new gene belongs to what is now a family of four interferon-lambda protein-encoding genes, three of which were discovered more than ten years ago (IFNL1, IFNL2 and IFNL3) The mechanism by which the IFNL 4 protein impairs hepatitis C virus clearance remains unknown. Further studies will explore molecular function of this novel protein in normal and disease conditions.

This study was conducted collaboratively with the National Institute of Diabetes and Digestive and Kidney Diseases at NIH, as well as the U.S. Food and Drug Administration, and a number of universities and research institutions. Funding was provided by NCI grant Z01 CP005782.

NCI Press Officers | Newswise
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>