Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigation of Prion Folding on Cell Membranes

11.08.2008
Abnormally folded proteins cause a number of illnesses such as the Creutzfeldt-Jacob Disease, BSE (bovine spongiform encephalopathy) and Alzheimer’s.

It is still unknown why this misfolding occurs. The first stages of folding and the onset of the aggregation of the proteins, the so-called oligomerisation, appear to be decisive for pathogenesis.

The Research teams of Prof. Klaus Gerwert and Prof. Detlev Riesner in Bochum and Düsseldorf have now been able to observe the proteins in their natural environment. They investigated the structural changes of the prion protein (PrP), the trigger for Creutzfeldt-Jacob Disease, by anchoring it to a cell membrane. As summarized by Prof. Gerwert, “Much to our surprise, the reaction of a membrane-anchored prion protein differs from that of a PrP in solution.

Unstructured parts of the protein fold in a manner that makes it easy for another prion protein to be adsorbed – the possible onset of the pathogenetic structure.” The results of this research work are available online in the current edition of the Proceedings of the National Academy of Science (PNAS).

Abnormal folding in replication

The prion protein is physiologically well-folded in a healthy organism, particularly within the central nervous system. If prion proteins refold, they can change into abnormally structured, infectious prion proteins. Insoluble deposits within the cells, so-called amyloid structures, which ultimately lead to the dissolution of the affected cells, gradually develop. Amyloid diseases are almost always fatal.

The binding of membranes changes the behaviour of the prions

Gerwert and Riesner are the first scientists who have been able to reproduce the situation in living cells by analyzing membrane-anchored prion proteins. They were surprised to discover that there is a difference between the behaviour of the membrane-anchored protein at the membrane and the un-bound membrane in solution, which had been the focal point of all biophysical research work to date.

The Nobel Prize Winner Kurt Wüthrich had also determined the three-dimensional structure of the prion protein on unanchored prion proteins. To cite Prof. Gerwert, “High concentrations of prion protein at the membrane result in unstructured parts of the prion protein folding in a manner that makes it easy for numerous prion proteins to be adsorbed.

So-called beta sheets, comparable with two corrugated iron sheets, develop, enabling easy and perfectly fitting anchorage of the proteins.” The folding thus appears to induce the oligomerisation and possibly also the pathogenetic structure. To date, the structure of fully glycosylated prion proteins at the membrane has not been described in research reports.

Infrared spectroscopy identifies the folding

This new information could be gained by interdisciplinary cooperation of the two research teams. The team from Düsseldorf has already presented many important reports on prion research in the past. The studies on the folding of the membranes were then performed in Bochum. A new method was introduced: the prion protein was anchored to a membrane that was placed on an ATR (attenuated total reflectance) crystal.

The folding was then analyzed by infrared spectroscopy. “If an infrared ray passes through the ATR crystal, part of the radiation penetrates into and is absorbed by the attached sample,” explained Prof. Gerwert. “The absorption is just as unique for a protein structure as a fingerprint is for a human being.” In the infrared spectrum, every protein structure creates its own pattern. Changes therein are direct signs of a folding procedure.

Prof. Dr. Klaus Gerwert | alfa
Further information:
http://www.bph.rub.de

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>