Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inverse Fingerprints on Paper

05.11.2012
Visualization of Latent Fingermarks by Nanotechnology: Reversed Development on Paper: A Possible Remedy to the Variation in Sweat Composition

Paper is one of the surfaces most commonly tested for fingerprints in forensics. Unfortunately, it is particularly difficult to make fingerprints on paper visible. In the journal Angewandte Chemie, Israeli scientists have now introduced a new method developed specifically for use on paper.



It produces a “negative” of the fingerprint and is, in contrast to conventional methods, independent of the composition of the sweat residue left behind.

In many criminal cases, paper evidence plays an important role and it would be useful to know through whose hands checks, documents, or paper currency have passed. Studies have shown that only about half of the fingerprints present on paper can be made sufficiently visible. The main reason that this does not work consistently seems to be the highly variable composition of the sweat left behind on the paper.

A team led by Daniel Mandler and Joseph Almog at the Hebrew University of Jerusalem has now developed a procedure that avoids these problems. It involves a sort of inversion of an established method in which gold nanoparticles are first deposited onto the invisible fingerprints, followed by elemental silver, similar to the development of a black and white photograph.

In the conventional technique, the gold particles get stuck to components of the sweat in fingerprints. In contrast, the gold nanoparticles in the new method stick directly to the paper, not the sweat. This technique uses the sebum from the fingerprints, which effectively shields the paper beneath it from the gold nanoparticles. Treatment with a developer containing silver, which turns the areas with gold on them black, results in a negative image of the fingerprint.

The secret to the success of these researchers is a special bifunctional reagent. The head of this molecule is an acylpyridazine group, which can bind to cellulose. The tail is made of hydrocarbon chains with a sulfur-containing group at the end, which binds to gold and attaches the molecule to the surface of the gold nanoparticles. When gold particles coated with these molecules are deposited onto paper with a fingerprint on it, the heads bind to the cellulose in the paper, avoiding the fat-containing lines.

Because only the fatty components of the fingerprints are used, the possibly unfavorable composition of the sweat in the fingerprint plays no role in this method. This technique also promises to alleviate another problem: if paper has become wet, it has previously been nearly impossible to detect fingerprints because the amino acids in the sweat, which are the primary substrate for current chemical enhancement reactions, are dissolved and washed away by water. The fatty components are barely effected.

About the Author
Joseph Almog is a Professor of forensic chemistry at the Casali Institute of Applied Chemistry, The Hebrew University of Jerusalem, and formerly the director of the Division of Identification and Forensic Science (DIFS) of the Israel Police. His main research topics are development of crime-scene techniques, explosives detection and identification and enhancement of latent fingermarks. He is the 2005 laureate of the American Academy of Forensic Sciences' Lucas Medal "for outstanding achievements.
Author: Joseph Almog, Hebrew University of Jerusalem (Israel), http://www.huji.ac.il/dataj/controller/ihoker/MOP-STAFF_LINK?sno=208470

Title: Visualization of Latent Fingermarks by Using Nanotechnology for Reversed Development on Paper: A Remedy to the Variation in Sweat Composition

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201205259

Joseph Almog | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>