Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Inventory of Moths


Biodiversity in the Andes: Teaming up international colleagues, an entomologist of Jena University identifies nearly 2,000 geometrid moth species in the South-American Andes

The rain forests in the mountains of the tropical Andes are amongst the most biodiverse regions on the planet. But the multitude of ants, beetles, moths and butterflies which can be found here are largely unknown.

Oenoptila anetteae - one moth species identified by Dr Gunnar Brehm (University Jena) in the South-American Andes.

Photo: Gunnar Brehm/FSU

Dr. Gunnar Brehm (University Jena) during a field trip in Ecuador.

Photo: Gunnar Brehm/FSU

An international team of researchers recently drew up a thorough inventory of the family of the species of looper moths (Geometridae). They came up with a surprising result: The diversity of these moths is much greater than was previously assumed. The scientists working with Dr Gunnar Brehm of the Friedrich Schiller University Jena (Germany) give an account of it in the online open access science journal PLOS ONE

In the Podocarpus National Park in southern Ecuador between about 1,000 and 3,000 meters above sea level, the team collected and identified moth species. They were able to track down 1,857 different species – this is about 80 percent more than previous estimates suggested.

“We assume that the diversity of moths is in actual fact even higher,“ Dr Brehm, the leading scientist of the study says. The researcher from the Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum estimates that at least 2,350 species could be discovered here.

By way of comparison: In the whole of Europe there are less than 1,000 geometrid moths. However, the researched region in Ecuador comprises only about 25 square kilometres. In the rain forests of Borneo, which are equally well known for their biodiversity, 'only' 1,100 species of Geometridae are known. “It is especially remarkable that the diversity is similarly high at an altitude of 3,000 meters as at 1,000 meters,” Dr Brehm says. Such a pattern is extremely unusual as most animal groups get scarcer at higher elevations.

The significant rise of the diversity of the moth species – as opposed to earlier estimations and studies – can be explained by improved methods to identify the moths – according to the researchers from Germany, Canada, the USA and Austria. Brehm and his colleagues used a method of identification which allows a fast and precise categorization. They use 'DNA-barcodes' – defined areas in the genetic information of the moths – which distinguish nearly every species in an unmistakable way. “This is a successful way to distinguish even very similar looking or closely related species from each other,” Brehm says.

Beginning in1999, Gunnar Brehm undertook six field trips to Ecuador and analyzed more than 30,000 specimens of moths. This 'inventory of geometrid moths' is at the same time also a race against time. And here is why: the biodiversity of the tropical rain forests is in great danger. According to predictions, about half of all species will be extinct within the next two centuries.

Climate change or deforestation are bound to destroy their habitat. “This is equally true for the mountain rain forests of the Andes,“ says Brehm who was able to witness it in the field. Year after year in hundreds of square kilometres of wood in Ecuador are being slashed and burned. As time is running out, Brehm and his colleagues are heading towards their next destination: they are planning to categorize the diversity of moths 1,000 kilometres southwards in the Peruvian Andes.

Original Publication:
Brehm G et al. Turning up the heat on a hotspot: DNA barcodes reveal 80% more species of geometrid moths along an Andean elevational gradient. PLOS ONE, 2016, DOI:10.1371/journal.pone.0150327,

Dr Gunnar Brehm
Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum
Friedrich Schiller University Jena
Erbertstraße 1, 07743 Jena
Phone: ++49 3641 / 949184
Email: gunnar.brehm[at]

Weitere Informationen:

Dr. Ute Schönfelder | Friedrich-Schiller-Universität Jena

Further reports about: Andes moth rain forests sea level tropical rain forests

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>