Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Invention at the Weizmann Institute: Enables Severely Disabled People to Communicate and Steer a Wheelchair by Sniffing

27.07.2010
Weizmann Institute neurobiologists and electrical engineers have invented a new technology that lets the severely disabled communicate or steer a wheelchair by sniffing.

A unique device based on sniffing – inhaling and exhaling through the nose – might enable numerous disabled people to navigate wheelchairs or communicate with their loved ones. Sniffing technology might even be used in the future to create a sort of ‘third hand,’ to assist healthy surgeons or pilots.

Developed by Prof. Noam Sobel, electronics engineers Dr. Anton Plotkin and Aharon Weissbrod and research student Lee Sela in the Weizmann Institute’s Neurobiology Department, the new system identifies changes in air pressure inside the nostrils and translates these into electrical signals. The device was tested on healthy volunteers as well as quadriplegics, and the results showed that the method is easily mastered. Users were able to navigate a wheelchair around a complex path or play a computer game with nearly the speed and accuracy of a mouse or joystick.

Sobel: ‘The most stirring tests were those we did with locked-in syndrome patients. These are people with unimpaired cognitive function who are completely paralyzed – ‘locked into’ their bodies. With the new system, they were able to communicate with family members, and even initiate communication with the outside. Some wrote poignant messages to their loved ones, sharing with them, for the first time in a very long time, their thoughts and feelings.’ Four of those who participated in the experiments are already using the new writing system, and Yeda Research and Development Company, Ltd., – the technology transfer arm of the Weizmann Institute – is investigating the possibilities for developing and distributing the technology.

Sniffing is a precise motor skill that is controlled, in part, by the soft palate – the flexible divider that moves to direct air in or out through the mouth or nose. The soft palate is controlled by several nerves that connect to it directly through the braincase. This close link led Sobel and his scientific team to theorize that the ability to sniff – that is, to control soft palate movement – might be preserved even in the most acute cases of paralysis. Functional magnetic resonance imaging (fMRI) lent support to the idea, showing that a number of brain areas contribute to soft palate control. This imaging revealed a significant overlap between soft palate control and the language areas of the brain, hinting to the scientists that the use of sniffing to communicate might be learned intuitively.

To test their theory, the researchers created a device with a sensor that fits on the nostril’s opening and measures changes in air pressure. For patients on respirators, they developed a passive version of the device, which diverts airflow to the patient’s nostrils. About 75% of the subjects on respirators were able to control their soft palate movement to operate the device. Initial tests, carried out with healthy volunteers, showed that the device compared favorably with a mouse or joystick for playing computer games. In the next stage, carried out in collaboration with Prof. Nachum Soroker of Loewenstein Hospital Rehabilitation Center in Raanana, quadriplegics and locked-in patients tested the device.

One patient who had been locked in for seven months following a stroke learned to use the device over a period of several days, writing her first message to her family. Another, who had been locked in since a traffic accident 18 years earlier wrote that the new device was much easier to use than one based on blinking. Another ten patients, all quadriplegics, succeeded in operating a computer and writing messages through sniffing.

In addition to communication, the device can function as a sort of steering mechanism for wheelchairs: Two successive sniffs in tell it to go forward, two out mean reverse, out and then in turn it left, and in and out turn it right. After fifteen minutes of practice, a subject who is paralyzed from the neck down managed to navigate a wheelchair through a complex route – sharp turns and all – as well as a non-disabled volunteer.

Sniffs can be in or out, strong or shallow, long or short; and this gives the device’s developers the opportunity to create a complex ‘language’ with multiple signals. The new system is relatively inexpensive to produce, and simple and quick to learn to operate in comparison with other brain-machine interfaces. Sobel believes that this invention may not only bring new hope to severely disabled people, but it could be useful in other areas, for instance as a control for a ‘third arm’ for surgeons and pilots.

Prof. Noam Sobel’s research is supported by the Nella and Leon Benoziyo Center for Neurosciences; the J&R Foundation; and Regina Wachter, NY.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at
http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Yivsam Azgad | idw
Further information:
http://wis-wander.weizmann.ac.il
http://wis-wander.weizmann.ac.il/site/en/weizman.asp?pi=371&doc_id=6174

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>