Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Invaluable Inteins

It’s the ugly duckling story of the molecular world. Intein, thought two decades ago to be nothing more than a molecular parasite or a harmless hitchhiker, is today an invaluable tool in the ever-important field of protein research.

“Inteins were originally found in nature and seen as an oddity before we knew their function,” says Dr. Paul Liu, professor in the department of Biochemistry and Molecular Biology at Dalhousie University in Halifax, Nova Scotia. “But with greater research curiosity, more was understood about their usefulness and they attracted wider attention.”

Dr. Liu was recently awarded $120,000 from the Natural Sciences and Engineering Research Council of Canada (NSERC) to study the evolutionary and functional versatility of inteins. The funding will also help Dr. Liu replace his graduating students with new students without a gap in training.

The first to discover intein-splitting, his group develops intein-based protein splicing technology for various applications. Now, protein fragments can be pieced together to form larger ones leading to new pathways for researchers to make proteins, whereas before they could only split them – like “cutting and pasting.”

The splicing has allowed for segment labeling in protein nuclear magnetic resonance spectroscopy (NMR), a process used to study the structure and dynamics of proteins – the molecules responsible for making us do the things we do, our health, the things that make us tick.

In fact, Dr. Liu’s group collaborates with laboratories in the U.S. to overcome difficulty in gene therapy. “In past cases large genes couldn’t be delivered into a person’s cells,” explains Dr. Liu. “Now you can deliver smaller proteins to the gene and splice them together once there.”

One of the most interesting prospects of intein research is that it may finally be the key to creating spider-silk. For centuries many have tried — unsuccessfully — to create the substance, the strongest fibre known to humans. While the silk-like fibre is made of proteins, it can’t be made in cells with recombinant (artificial) proteins. However, as Dr. Liu explains, with the use of intein-splitting, it may be possible to produce proteins fragment by fragment and splice them into spider-silk.

So, Will Spiderman one day be swinging past your office window? Stay tuned.

Charles Crosby | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Here comes the long-sought-after iron-munching microbe
25.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Novel method to benchmark and improve the performance of protein measumeasurement techniques
25.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>