Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intriguing structures of gold nanoparticles

05.08.2008
Scientists from Germany, Canada and the Netherlands have studied tiny gold nanoparticles, so-called clusters, and found them to have fascinating arrangements of their constituent atoms.

For example, twenty gold atoms form a tetrahedron, a sort of pyramid. The nineteen-atom cluster is a truncated pyramid, which can be formed by cutting off one corner atom from the twenty-atom gold pyramid. The structures have been identified using the Free Electron Laser for Infrared eXperiments FELIX at the FOM-Institute for Plasma Physics Rijnhuizen in Nieuwegein.

Detailed knowledge about the geometries of such nanoparticles can lead to a better understanding of the unexpected catalytic activity of very small gold particles. The researchers published their results in Science on 1 august 2008.

Gold is known to be a noble metal which means that it is inert and shows little reactivity. The resistance of gold to corrosion has been known to the human for millennia and is reflected in the use of gold in jewelry and currency. For the chemist, however, the reluctance of gold to undergo reactions was a reason to show little interest in this metal once the days of alchemy were past. This changed a few years ago when it was found that very small gold particles can catalyze, i.e. accelerate, important chemical reactions, for example the oxidation of hydrogen and carbon monoxide.

... more about:
»FELIX »Physic »Pyramid »nanoparticles »neutral »vibrational

Reasons for the high reactivity of these nanoscopic particles, so-called clusters, are assumed to be hidden in their atomic structure. As the active nanoparticles are smaller than the wavelength of visible light their structure cannot be inspected using an optical microscope. In the recent past, the structure of charged gold clusters had been determined, but that of the neutral clusters, thought to be more relevant for the catalytic activity, remained elusive.

Now, an international collaboration of scientists from the FOM-Institute for Plasma Physics Rijnhuizen in Nieuwegein, the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlijn and the Steacie Institute for Molecular Sciences in Ottawa, Canada, has succeeded in identifying the structures of neutral gold clusters. They observed how the gold clusters interact with infrared laser light from the free-electron laser FELIX at the FOM-Institute for Plasma Physics in Nieuwegein.

The scientists produced the gold clusters by evaporating them from solid gold metal and subsequently using a helium gas beam to pick them up and to cool the particles. The cold beam of gold clusters contains cluster sizes from three to twenty atoms. The clusters are exposed to the intense infrared light. The scientists investigate the response to different frequencies of the infrared light. The atoms in molecules and clusters are held together by chemical bonds, which can be thought of as springs. If the frequency of the infrared light is matched to the frequency of the spring the light will amplify this vibration. In the very intense light of FELIX the spring can start to vibrate so strongly that the particle falls apart. Using a mass spectrometer the scientists can measure this process and reconstruct the vibrational spectrum.

The structure of the gold clusters can be determined by comparing the vibrational spectrum with those predicted using quantum chemistry theory. The complexity of the vibrational spectrum relates strongly to the symmetry of the cluster. Highly symmetric clusters, i.e. clusters which appear to be the same when observed from different sides, exhibit simple spectra with few but often intense signals. For example, only a single intense feature was observed in a cluster that contained precisely twenty gold atoms.

This is the finger print of a highly symmetric structure that is shown to be a triangular pyramid, a tetrahedron that has four equivalent corners and faces. The spectrum of the cluster with nineteen gold atoms is more complex, reflecting a drop in symmetry. Analysis of the vibrational spectrum shows that the structure is that of the twenty atom cluster with a gold atom missing from one of the corners.

The neutral clusters with nineteen and twenty atoms show the same structures that are familiar from their negative counterparts. A neutral cluster with seven gold atoms shows an even more complicated spectrum that matches a two-dimensional, asymmetric structure where six atoms form a triangle with one additional gold atom attached. In contrast to the larger clusters, for gold-seven the positively charged cluster arranges differently. In this cluster six atoms form a hexagon with one atom in its centre.

A new way is opened to study a whole range of gold clusters and clusters of other catalytically important metals at the molecular level. Once their structures are revealed the same techniques can be applied to follow intermediate steps of catalytic reactions on nanoparticles.

Annemarie Zegers | alfa
Further information:
http://www.fom.nl
http://www.fom.nl/live/home.pag

Further reports about: FELIX Physic Pyramid nanoparticles neutral vibrational

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>