Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intriguing structures of gold nanoparticles

05.08.2008
Scientists from Germany, Canada and the Netherlands have studied tiny gold nanoparticles, so-called clusters, and found them to have fascinating arrangements of their constituent atoms.

For example, twenty gold atoms form a tetrahedron, a sort of pyramid. The nineteen-atom cluster is a truncated pyramid, which can be formed by cutting off one corner atom from the twenty-atom gold pyramid. The structures have been identified using the Free Electron Laser for Infrared eXperiments FELIX at the FOM-Institute for Plasma Physics Rijnhuizen in Nieuwegein.

Detailed knowledge about the geometries of such nanoparticles can lead to a better understanding of the unexpected catalytic activity of very small gold particles. The researchers published their results in Science on 1 august 2008.

Gold is known to be a noble metal which means that it is inert and shows little reactivity. The resistance of gold to corrosion has been known to the human for millennia and is reflected in the use of gold in jewelry and currency. For the chemist, however, the reluctance of gold to undergo reactions was a reason to show little interest in this metal once the days of alchemy were past. This changed a few years ago when it was found that very small gold particles can catalyze, i.e. accelerate, important chemical reactions, for example the oxidation of hydrogen and carbon monoxide.

... more about:
»FELIX »Physic »Pyramid »nanoparticles »neutral »vibrational

Reasons for the high reactivity of these nanoscopic particles, so-called clusters, are assumed to be hidden in their atomic structure. As the active nanoparticles are smaller than the wavelength of visible light their structure cannot be inspected using an optical microscope. In the recent past, the structure of charged gold clusters had been determined, but that of the neutral clusters, thought to be more relevant for the catalytic activity, remained elusive.

Now, an international collaboration of scientists from the FOM-Institute for Plasma Physics Rijnhuizen in Nieuwegein, the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlijn and the Steacie Institute for Molecular Sciences in Ottawa, Canada, has succeeded in identifying the structures of neutral gold clusters. They observed how the gold clusters interact with infrared laser light from the free-electron laser FELIX at the FOM-Institute for Plasma Physics in Nieuwegein.

The scientists produced the gold clusters by evaporating them from solid gold metal and subsequently using a helium gas beam to pick them up and to cool the particles. The cold beam of gold clusters contains cluster sizes from three to twenty atoms. The clusters are exposed to the intense infrared light. The scientists investigate the response to different frequencies of the infrared light. The atoms in molecules and clusters are held together by chemical bonds, which can be thought of as springs. If the frequency of the infrared light is matched to the frequency of the spring the light will amplify this vibration. In the very intense light of FELIX the spring can start to vibrate so strongly that the particle falls apart. Using a mass spectrometer the scientists can measure this process and reconstruct the vibrational spectrum.

The structure of the gold clusters can be determined by comparing the vibrational spectrum with those predicted using quantum chemistry theory. The complexity of the vibrational spectrum relates strongly to the symmetry of the cluster. Highly symmetric clusters, i.e. clusters which appear to be the same when observed from different sides, exhibit simple spectra with few but often intense signals. For example, only a single intense feature was observed in a cluster that contained precisely twenty gold atoms.

This is the finger print of a highly symmetric structure that is shown to be a triangular pyramid, a tetrahedron that has four equivalent corners and faces. The spectrum of the cluster with nineteen gold atoms is more complex, reflecting a drop in symmetry. Analysis of the vibrational spectrum shows that the structure is that of the twenty atom cluster with a gold atom missing from one of the corners.

The neutral clusters with nineteen and twenty atoms show the same structures that are familiar from their negative counterparts. A neutral cluster with seven gold atoms shows an even more complicated spectrum that matches a two-dimensional, asymmetric structure where six atoms form a triangle with one additional gold atom attached. In contrast to the larger clusters, for gold-seven the positively charged cluster arranges differently. In this cluster six atoms form a hexagon with one atom in its centre.

A new way is opened to study a whole range of gold clusters and clusters of other catalytically important metals at the molecular level. Once their structures are revealed the same techniques can be applied to follow intermediate steps of catalytic reactions on nanoparticles.

Annemarie Zegers | alfa
Further information:
http://www.fom.nl
http://www.fom.nl/live/home.pag

Further reports about: FELIX Physic Pyramid nanoparticles neutral vibrational

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>