Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intimate insights into nature’s photosynthetic powerhouse

11.09.2012
Scientists at the Max Planck Institute for Chemical Energy Conversion (MPI CEC) have solved a long-­‐standing puzzle in photosynthesis research.

With the aid of quantum chemistry they were able to provide unexpected insight into the properties of the oxygen evolving complex (OEC). The OEC is the catalyst in plants that splits water using sunlight in order to build carbohydrates, thus powering all life on earth.


Figure (copyright by MPI CEC): The two structures of the core of nature's water oxidizing catalyst Photosystem II, which interconvert by changing bonds between an oxygen and its two manganese bondingpartners; a different spectroscopic signal is produced by eacharrangement.

Its precise structure, which was showing enigmatic spectroscopic behaviour, could now finally be solved with the aid of quantum chemistry. In one of its most studied oxidation states the OEC revealed two types of spectroscopic signals.

These signals could be converted to one another by various treatments, but not in any structurally comprehensible way. Moreover the signals are so complex that a detailed molecular structure could not be deduced. With the aid of theoretical spectroscopic techniques, Dr. Dimitrios Pantazis, scientist at the MPI CEC, and his colleagues were able to show that the two signals are caused by two energetically similar and interconvertible structures of the complex.

The core of the enzyme consists of a partial cubic structure made of manganese, calcium and oxygen (Mn4CaO5 s. figure). "Calculations show, that the two structures differ only by one bond, that swaps between the central oxygen and the two terminal manganese atoms", states Pantazis. This small change has a huge impact on the electronic structure and thus the spectroscopic properties of the molecule. Both structures are almost equal in energy and the bond swapping can happen over a low energetic barrier. Crucially, the scientists at the MPI additionally proved using theoretical simulations that each of the two structures has a distinct spectroscopic signature and that these two signatures have a one-­‐to-­‐one correspondence with the experimentally observed spectroscopic signals.

The deep understanding of the OEC is fundamental in order to further elucidate nature´s mysteries on the oxidation of water, a reaction that plays an essential role for energy research, such as in artificial photosynthesis. After these striking findings, research by Pantazis and his group is currently focused on identifying whether the oxygen atom swapping bonds with the manganese is one of the oxygen atoms released from the enzyme as molecular oxygen.

The new findings will shed light on the kinetics and exchange of water molecules that take part in the reaction, paving the way for a detailed atomic-­‐level understanding of the mechanism of water oxidation.

Published online in Angewandte Chemie International Edition, August 21 http://dx.doi.org/10.1002/anie.201204705

The Max Planck Institute for Chemical Energy Conversion (MPI CEC) in Muelheim an der Ruhr focuses on fundamental chemical reactions that play a role for the storage and conversion of energy. The main objective is to save the energy of sunlight in small, energy rich molecules, and thus make it easily available independently of time and location. In the three departments Heterogeneous Reactions, Molecular Theory and Spectroscopy and Biophysical Chemistry work 75 scientists from more than 20 countries and with their expertise they contribute to a sustainable energy concept.

Dr. Rebekka Loschen | Max-Planck-Institute
Further information:
http://www.cec.mpg.de

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>