Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intestinal lymphatic tissue important for the absorption and spread of the scrapie prion

12.01.2009
Scrapie is a transmissible, degenerative and ultimately fatal disease of the nervous system of sheep. The cause of the disease is a prion protein, and absorption from the intestine is assumed to be the natural route of infection.

Lymphatic tissue associated with the intestine is important for the early accumulation of prion protein and its subsequent spread to the central nervous system.

Transmissible prion diseases occur in both animals and man, two well-known ones being mad cow disease of cattle and Creutzfeldt Jacobs disease of man. These diseases produce symptoms in the central nervous system, with classical scrapie being characterised by intense itching with subsequent loss of wool, smacking of the lips, abnormal gait, and eventually collapse.

Protein molecules may show different properties when their structures become altered, for example, proteins in egg white are hardened by heat treatment. The assumed cause of prion diseases is that the structure of the normal prion protein (called PrPC) becomes altered. The abnormal, disease-associated form of the prion protein (called PrPSc) is assumed to be the infectious agent.

Infection most likely occurs across the intestine, and one first sees an accumulation of PrPSc in the lymphatic tissue associated with the intestine, especially in areas of the small intestine called Peyer's patches. The infection then spreads to the central nervous system and the brain, where, in the final stages of the disease, one sees an accumulation of PrPSc and also structural changes such as sponge-like "holes" in the brain mass.

We understand as yet very little of just how the infectious PrP is absorbed from the intestine. It is assumed that infection requires the presence of the normal form of the protein PrP, and it is known that the gene for PrP is active in a series of different types of cells and tissues.

For his doctorate, Lars Austbø investigated the activity of the gene for prion protein (PrP mRNA) by looking at where in the intestinal tissue it is formed and in what quantity. He also identified other genes of possible significance for the early phase of scrapie.

Austbø used advanced gene technology and molecular biology to study both prion gene activity (PrP mRNA) and the presence of the protein PrPC in the Payer's patches of the small intestine and in the spleen - two organs where lymphoreticular tissue is assumed to be important for the absorption of the infective substance (PrPSc) and its spread to the brain.

Austbø and his colleagues have compiled new knowledge of the tissues that the PrPC protein and its mRNA is expressed in and the degree to which the gene is active. In addition, the study has shown that accumulation of the disease-related prion protein (PrPSc) is not necessarily associated with high levels of the normal prion protein. This conflicts with earlier assumptions and may force a re-evaluation of earlier theories on the absorption and distribution of the disease-related prion protein.

In addition, Lars Austbø worked with the identification of other genes that may play a role in the development of scrapie. Many genes contribute to, or are affected by, any disease progression. By mapping such genes, one can gain a better impression of the processes that are initiated and thereby a better understanding of disease development.

Cand. scient. Lars Austbø defended his Ph. D. thesis, entitled "Studies on gene expression during the lymphoreticular phase of scrapie in sheep", on June 26, 2008. The work for the thesis was done at the Department of Basal Sciences and Aquatic Medicine, the Norwegian School of Veterinary Science.

Magnhild Jenssen | alfa
Further information:
http://www.veths.no
http://www.veths.no/105/English/Kima/Intestinal-lymphatic-tissue-important-for-the-absorption-and-spread-of-the-scrapie-prion/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>