Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intestinal lymphatic tissue important for the absorption and spread of the scrapie prion

12.01.2009
Scrapie is a transmissible, degenerative and ultimately fatal disease of the nervous system of sheep. The cause of the disease is a prion protein, and absorption from the intestine is assumed to be the natural route of infection.

Lymphatic tissue associated with the intestine is important for the early accumulation of prion protein and its subsequent spread to the central nervous system.

Transmissible prion diseases occur in both animals and man, two well-known ones being mad cow disease of cattle and Creutzfeldt Jacobs disease of man. These diseases produce symptoms in the central nervous system, with classical scrapie being characterised by intense itching with subsequent loss of wool, smacking of the lips, abnormal gait, and eventually collapse.

Protein molecules may show different properties when their structures become altered, for example, proteins in egg white are hardened by heat treatment. The assumed cause of prion diseases is that the structure of the normal prion protein (called PrPC) becomes altered. The abnormal, disease-associated form of the prion protein (called PrPSc) is assumed to be the infectious agent.

Infection most likely occurs across the intestine, and one first sees an accumulation of PrPSc in the lymphatic tissue associated with the intestine, especially in areas of the small intestine called Peyer's patches. The infection then spreads to the central nervous system and the brain, where, in the final stages of the disease, one sees an accumulation of PrPSc and also structural changes such as sponge-like "holes" in the brain mass.

We understand as yet very little of just how the infectious PrP is absorbed from the intestine. It is assumed that infection requires the presence of the normal form of the protein PrP, and it is known that the gene for PrP is active in a series of different types of cells and tissues.

For his doctorate, Lars Austbø investigated the activity of the gene for prion protein (PrP mRNA) by looking at where in the intestinal tissue it is formed and in what quantity. He also identified other genes of possible significance for the early phase of scrapie.

Austbø used advanced gene technology and molecular biology to study both prion gene activity (PrP mRNA) and the presence of the protein PrPC in the Payer's patches of the small intestine and in the spleen - two organs where lymphoreticular tissue is assumed to be important for the absorption of the infective substance (PrPSc) and its spread to the brain.

Austbø and his colleagues have compiled new knowledge of the tissues that the PrPC protein and its mRNA is expressed in and the degree to which the gene is active. In addition, the study has shown that accumulation of the disease-related prion protein (PrPSc) is not necessarily associated with high levels of the normal prion protein. This conflicts with earlier assumptions and may force a re-evaluation of earlier theories on the absorption and distribution of the disease-related prion protein.

In addition, Lars Austbø worked with the identification of other genes that may play a role in the development of scrapie. Many genes contribute to, or are affected by, any disease progression. By mapping such genes, one can gain a better impression of the processes that are initiated and thereby a better understanding of disease development.

Cand. scient. Lars Austbø defended his Ph. D. thesis, entitled "Studies on gene expression during the lymphoreticular phase of scrapie in sheep", on June 26, 2008. The work for the thesis was done at the Department of Basal Sciences and Aquatic Medicine, the Norwegian School of Veterinary Science.

Magnhild Jenssen | alfa
Further information:
http://www.veths.no
http://www.veths.no/105/English/Kima/Intestinal-lymphatic-tissue-important-for-the-absorption-and-spread-of-the-scrapie-prion/

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>