Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International Team Collaborates on Sequence Data for German E. Coli Outbreak

08.07.2011
Pacific Biosciences of California, Inc. (NASDAQ: PACB) announced that it has completed a de novo sequence assembly of the Escherichia coli O104:H4 strain responsible for the recent outbreak in Germany using its Single Molecule Real Time (SMRT™) technology, and sequenced 11 related bacterial strains (including six previously unsequenced strains of the same serotype) for comparative analyses.

An international team of scientific experts on E. coli collaborated on the rapid sequencing project to provide more comprehensive information about the origins of the strain that gave rise to the deadly outbreak. The data were generated using an early version of chemistry and software in development at Pacific Biosciences for the next major PacBio RS product upgrade, planned for the fourth quarter of 2011.

The data provided to the public domain includes a complete assembly of the German outbreak strain, alignment to assemblies from other outbreak isolates, and sequences for 11 related Enteroaggregative E. coli strains. The project demonstrates the ability to produce a PacBio-only de novo assembly for a complex microbial pathogen, and the power of rapid sequencing of multiple genomes with the PacBio RS to elucidate the evolutionary history of a pathogenic microbe. A summary of the project appears on the company’s website at http://blog.pacificbiosciences.com.

The Pacific Biosciences scientific team, led by Chief Scientific Officer Eric Schadt, Ph.D., is collaborating with some of the world’s leading experts on E. coli and infectious diseases for this project. The collaborators include:

In Europe:
• Karen Angeliki Krogfelt, Ph.D., Professor, Head of Unit, Gastrointestinal Infections, Statens Serum Institut (SSI), Denmark
• Flemming Scheutz, Ph.D., Head of the WHO Collaborating Centre for Reference and Research on Escherichia and Klebsiella, SSI, Denmark
In the U.S.:
• James P. Nataro, M.D., Ph.D., Professor and Chair, Pediatrics, University of Virginia School of Medicine
• David A. Rasko, Ph.D., Assistant Professor, University of Maryland School of Medicine, Institute for Genome Sciences and Department of Microbiology and Immunology
• Nadia Boisen, Ph.D., Research Scientist, Department of Pediatrics, University of Virginia School of Medicine

• Matthew K. Waldor, M.D., Ph.D., Professor of Medicine at Harvard Medical School, Brigham and Women’s Hospital, and HMMI

“Using samples provided by our collaborators, we rapidly sequenced each strain using a standard PacBio RS protocol that took on average less than eight hours from sample preparation to sequencing results,” said Dr. Schadt. “The ability to sequence the outbreak strain with reads averaging 2,900 base pairs and our longest reads at over 7,800 bases, combined with our circular consensus sequencing to achieve high single molecule accuracy with a mode accuracy distribution of 99.9%, enabled us to complete a PacBio-only assembly without having to construct specialized fosmid libraries, perform PCR off the ends of contigs, or other such techniques that are required to get to similar assemblies with second generation DNA sequencing technologies.”

Dr. Krogfelt commented: “These high quality data will provide scientists with more information about the genomic features of this strain that could provide new markers for predicting the higher degree of pathogenicity we are seeing with this outbreak. A more comprehensive evolutionary view of this pathogen may also help identify markers for antibiotic drug resistance that could be used in the future should other related strains emerge. The complexity of this case proves that international collaborations and communications are important in the achievement of detailed scientific information.”

The data are available for the bioinformatics community at the PacBio developer’s network (DevNet) web site (www.pacbiodevnet.com), where a suite of open source tools and other resources designed for SMRT sequence data are available to analyze the information. The data have also been submitted to the National Center for Biotechnology Information (NCBI) SRA database.

Sarah Pick | Newswise Science News
Further information:
http://www.umaryland.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>