Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New International Research Initiative on the Evolution of Insects officially started

03.02.2012
The 1KITE (1K Insect Transcriptome Evolution) project involves more than 50 scientists from all over the world.

It will unravel the secrets of the evolutionary history of insects using a molecular data set of unparalleled dimensions and quality. Started in September 2011, the transcriptomes of 1,000 insect species will be investigated. Within the next two years, BGI, China – the world’s largest genomic sequencing center – has invested initiating funds to enable this international project that requires roughly 6 Million dollars and has made its extensive sequencing infrastructure available to achieve this goal.


The evolution of damselflies (here a Coenagrion male) is of interest. Foto: Johannes Dambach, ZFMK


It is a lacewing (and not a butterfly). Nemoptera bipennis. Foto: Ekkehard Wachmann

The realization of this ambitious program requires synergistic collaboration among experts from a wide range of research fields. The 1KITE has brought together around 50 internationally renowned experts in molecular biology, morphology, palaeontology, embryology, bioinformatics, and scientific computing in an unprecedented way. Overall, scientists from seven nations (Australia, Austria, China, Germany, Japan, Mexico, and the US) are tightly collaborating in the 1KITE project.

A "transcriptome" includes the sequences of all the sets of genes that are being “translated ” into proteins in a particular organism at the time it was collected. It represents a major and important part of the complete genome, since these mRNAs are involved in the life processes of the organism and how it interacts with it's ecosystem. Analyses of the transcriptome data will allow the reconstruction of a robust phylogenetic tree of insects, which will greatly contribute to the understanding of the reasons for their astonishing success. Furthermore, the project includes the development of new and advanced approaches analyzing enormous (“phylogenomic”) data sets, which are generated by new laboratory techniques at an ever-increasing rate. “These data will produce the best resolved tree of insects, setting the stage for comparative analyses of genome evolution” says Prof. Bernhard Misof, Head of the Department of Molecular Biodiversity Research at the ZFMK, Bonn, Germany. Professor Misof is one of the initiators of this research program, along with Karl Kjer from Rutgers University, and Xin Zhou from BGI.

Insects are the most species-rich group of animals. They play a pivotal role in most non-marine ecosystems and many insect species are of enormous economic and medical importance as pests, pollinators, disease vectors, and keystone species. “It will be essential to resolve the relationships within insects in order to understand how such an immense diversity of insects could have evolved. Since insects are such an fundamental component of biodiversity we hope to answer why ecosystems shaped and adjusted in the way they are” says Dr. Xin Zhou, Head of the National Bio-resource Bank at BGI and co-founder of the 1KITE project.

Part of the project is devoted to the development of new bioinformatics methods. “The production of new data has gained such an enormous speed recently, that the analysis and storage of the data will become the real challenge in the near future!” says Dr. Alexandros Stamatakis, Head of the High Performance Computing Department at HITS, Heidelberg.

Involved are:

• From Japan: the Sugadaira Mountain Research Center; Department of Arthropod Comparative Embryology, University of Tsukuba; and the Department of Systematic Entomology, Hokkaido University.
• From Austria: the Department of Evolutionary Biology and the Department of Animal Biodiversity, University Vienna and the Natural History Museum, Vienna.
• From the US: the Department of Ecology, Evolution and Natural Resources and the Department of Biological Sciences, Rutgers University; the Department of Entomology, North Carolina State University; and Department of Entomology, University of Minnesota.
• From Australia: the CSIRO Ecosystem Sciences, Australian National Insect Collection, Canberra.
• From Mexico: the Centro de Estudios en Zoologí, Universidad de Guadalajara, Zapopan, Jalisco.
• From China: BGI and China Agricultural University, China Agricultural University, Department of Entomology, Laboratory of Systematic & Evolutionary Entomology, Bejing, China
• From Germany: Zoological Research Museum Koenig, the Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum Jena, the Department of Scientific Computing at the Heidelberg Institute for Theoretical Studies, the Zoological Institute and the Zoological Museum, University of Hamburg, the Department of Paleontology, Steinmann Institute, University of Bonn, and the Stuttgart State Museum of Natural History.

• From New Zealand: the Department of Biosystematics, Landcare Research, Auckland.

The Zoological Research Museum Alexander Koenig (ZFMK) and Leibniz Institute for Animal Biodiversity is one of the largest natural-history-research museums in Germany. The museum has earned its reputation as a leader in the documentation, research, and interpretation of biodiversity.

The Leibniz Association is a network of 87 scientifically, legally and economically independent research institutes and scientific service facilities. Leibniz Institutes perform strategic- and thematically-oriented research and offer scientific service of national significance while striving to find scientific solutions for major social challenges.

Sabine Heine | idw
Further information:
http://www.1kite.org/

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>