Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International research group documents unique songbird diversity of the Eastern Himalayas

28.05.2014

Article in the scientific journal NATURE describes the relevance of ecological niches to the evolution of new bird species

The Eastern Himalayas are home to more than 360 different songbird species, most of which are to be found nowhere else on the planet.


The Himalaya golden-spectacled warbler (Seicercus burkii) lives in the Eastern Himalayas. There are several closely related species of the same genus in Central and South China.

photo/©: Jochen Martens, JGU

This makes the region extending from eastern Nepal to the borderlands of China, India, and Myanmar unique and one of the most important hot spots for biological diversity in the western hemisphere. A recent research paper describes how this impressive bird community came about millions of years ago, emphasizing both the uniqueness and biological significance of this remote area. "As the Himalayan mountain range was formed, a profusion of completely different ecological niches were created," explains Professor Jochen Martens of Johannes Gutenberg University Mainz (JGU). "A wide variety of different songbird species were able to colonize these niches. The majority of these species did not evolve there but emigrated from the eastern and south-eastern regions of the Himalayas."

Martens has been conducting research in the Himalayas for 45 years and is the co-author of the article "Niche filling slows the diversification of Himalayan songbirds" published in the eminent scientific journal Nature.

The team of researchers from India, the US, Germany, and Sweden was able to sample and analyze the DNA of all songbirds found in the Himalayas. Team members such as Martens compiled some of the genetic material over the course of decades; some was found in old collections in European and North American museums or was taken from individual feathers collected by field workers.

The scientists were surprised at the relatively large differences in the genetic makeup even between species which are apparently closely related and that often have an extremely similar appearance. On average, each bird species separated from their closest relative six to seven million years ago. The time is roughly equivalent to the period separating human beings from chimpanzees, the animal most closely related to humans.

Over the past million years, new bird species have evolved such as those found in Southeast Asia, China, and Siberia. However, almost none of these have emigrated to the Eastern Himalayas. The team of researchers headed by Professor Trevor Price of the University of Chicago and Dhananjai Mohan of the Indian Forest Service believe that emigration has not taken place because of the difficulty of integration into the already tightly packed bird communities of the Eastern Himalayas.

"The capacity for new species to evolve appears to depend to a large extent on whether enough room for colonization is available," explains Martens. The Eastern Himalayas offered unique conditions for the development of an enormous diversity of songbird species. The research team concluded that the habitats have since been saturated so that barely any new niches were available for new species.

The findings from the DNA analyses essentially confirm those made by Martens after his many years spent examining bird songs. The various types of song show how acoustic properties, usually in the form of dialects, contribute to species evolution and how the individual species are distributed in an area with extreme elevation stratification, such as the Himalayas. Over the years, Martens has recorded more than 10,000 individual sounds from numerous species for his research, which he compiled in Europe and many parts of Asia.

Martens and his international research colleagues agree that the Eastern Himalayas on the borderlands of India, China, and Myanmar is an area of unique genetic diversity with regard to birds. They hope that their findings on songbirds will help stimulate research into other groups of animals, such as reptiles and mammals, in this impressive location. "It will only be possible to protect this natural heritage once it has been researched as thoroughly as possible," adds Martens.

Photos:
http://www.uni-mainz.de/bilder_presse/10_zoologie_Seicercus_burkii_01.jpg
The Himalaya golden-spectacled warbler lives in the Eastern Himalayas. There are several closely related species of the same genus in Central and South China. They can be distinguished by their vocalizations and genetic makeup.
photo/©: Jochen Martens, JGU

http://www.uni-mainz.de/bilder_presse/10_zoologie_Seicercus_burkii_02.jpg
The Himalaya golden-spectacled warbler (Seicercus burkii)
photo/©: Jochen Martens, JGU

Publication:
Trevor D. Price et al.
Niche filling slows the diversification of Himalayan songbirds
Nature, 30 April 2014
DOI: 10.1038/nature13272
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13272.html

Further information:
Professor em. Dr. Jochen Martens
Evolutionary Biology
Institute of Zoology
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-22675 or 39-22586
e-mail: martens@uni-mainz.de

Weitere Informationen:

http://www.uni-mainz.de/presse/17326_ENG_HTML.php - press release ;
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13272.html - publication

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>