Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International First: Gas-phase Carbonic Acid Isolated

11.01.2011
A team of chemists headed by Thomas Loerting from the University of Innsbruck and Hinrich Grothe from the Vienna University of Technology (TU Wien) in Austria have prepared and isolated gas-phase carbonic acid and have succeeded in characterizing the gas-phase molecules by using infrared spectroscopy. The results were published in the journal Angewandte Chemie International Edition.

In textbooks and other media the widespread belief still prevails that stable carbonic acid cannot be produced in pure form and is practically non-existent as it immediately decomposes to carbon dioxide and water. However, Innsbruck chemists headed by Erwin Mayer (Institute of General, Inorganic and Theoretical Chemistry) refuted this persistent dogma in chemistry several years ago.


In the tail of comets and other celestial bodies or astrophysical environments scientist suggest the existence of gas-phase carbonic acid, here comet Hale-Bopp. Photo: E. Kolmhofer, H. Raab; Johannes-Kepler-Observatory, Linz, Austria


Innsbruck scientists were first in producing two types of carbonic acid crystals. (Photo: Uni Innsbruck)

They belong to only a handful of scientists who have prepared pure solid carbonic acid experimentally. In an international first, the scientists have now produced gas-phase carbonic acid and, together with a research group headed by Hinrich Grothe at the Vienna University of Technology, they have also succeeded in proofing the existence of these molecules.

“Carbonic acid vapor is composed of at least three different species in the gas-phase: a cyclic dimer consisting of two molecules and two different types of monomers,“ explains Thomas Loerting (Institute of Physical Chemistry) the result of the comprehensive study.

Surprising result

For this experiment the researchers prepared carbonic acid in the laboratory in Innsbruck. It was then stored in liquid nitrogen and transported to Vienna by PhD student Jürgen Bernard. At the Institute of Materials Chemistry at the TU Wien the solid carbonic acid was warmed to minus 30 degrees Celsius. “During this process the carbonic acid molecules entered the gas-phase,“ says Loerting. This is a surprising result because many experts in the field believed that carbonic acid immediately decomposes to carbon dioxide and water. The Austrian scientists trapped the carbonic acid vapor in a solid matrix of the inert gas argon and cooled it down. “This produced a frozen image of the carbonic acid vapor, which we analyzed by using high-resolution infrared spectroscopy at the TU Wien,“ says Hinrich Grothe. “The spectrum we produced is extremely precise and we were able to assign the spectral bands to the vibration of each single molecule.“ For more than a decade, the chemists have been supported in their experimental research by Klaus Liedl from the Institute of Theoretical Chemistry in Innsbruck. His team of scientists has helped to interpret the experimental data with computational models. Additional calculations have been performed by Oscar Galvez from CSIC Madrid (Spanish National Research Council).

Infrared spectra in research

This experiment not only is of high importance for basic research but also for astronomy. The identification of gas-phase carbonic acid in the atmosphere of celestial bodies may be facilitated by the detailed spectra of gas-phase carbonic acid described in this study. “Conditions in space environments suggest that gas-phase carbonic acid may be found in the coma of comets or the poles of Mars,“ says Thomas Loerting. “However, infrared spectra currently measured in extraterrestrial environments are still too imprecise to be comparable to the results produced in our laboratory.“

The team of chemists headed by Loerting and Liedl are members of the research platform Advanced Materials of the University of Innsbruck and are supported by the Austrian Science Fund (FWF) and the European Research Council (ERC). The chemists in Vienna supervised by H. Grothe participate in the TU Wien Materials Research Cluster and are supported by the Austrian Exchange Service (ÖAD).

Contact:
Univ. Prof. Dr. Thomas Loerting
Institute of Physical Chemistry
University of Innsbruck
Innrain 52, 6020 Innsbruck, Austria
Phone: +43 512 507 5062
Email: Thomas.Loerting@uibk.ac.at
http://homepage.uibk.ac.at/~c724117/
Univ. Prof. Dr. Hinrich Grothe
Institute of Materials Chemistry
Vienna University of Technology
Lehargasse 2-4, 1060 Vienna, Austria
Phone: +43 1 58801 165122
Email: grothe@tuwien.ac.at
http://www.imc.tuwien.ac.at
Weitere Informationen:
http://dx.doi.org/10.1002/anie.201004729 - Spectroscopic Observation of Gas-Phase Carbonic Acid Isolated in Matrix. Jürgen Bernard, Markus Seidl, Ingrid Kohl, Klaus Liedl, Erwin Mayer, Oscar Gálvez, Hinrich Grothe, Thomas Loerting. Angewandte Chemie International Edition.

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.imc.tuwien.ac.at

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>