Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interfaces: Different for every molecule

19.10.2009
A novel spectroscopic technique reveals a new fundamental property of air/water interfaces

Contrary to expectations, structurally different molecules can display different solvent properties at an interface between air and water, researchers in Japan have discovered1.

Tahei Tahara and colleagues from the RIKEN Advanced Science Institute in Wako showed that polarity at this interface cannot be defined simply, because it depends on the nature of the solute molecule at the interface.

The finding could have significant consequences for chemistry at interfaces, since the polarity of a molecule’s environment affects how it reacts with other molecules. Fields such as atmospheric science, where air/water interfaces abound, will be particularly affected.

The researchers made their discovery using an interface-selective spectroscopic technique that they developed earlier2. The spectra that the technique produces are of comparable quality to those of bulk solutions, enabling previously impossible comparisons between systems.

The researchers looked at the electronic spectra of five coumarin dyes at the interface between air and water; electronic spectra are essentially a graphical representation of a molecule’s color. Coumarin dyes all share the same basic chemical structure and are used to probe the polarity of solvents because their spectra differ depending on the molecules’ environment.

Tahara and colleagues found that the spectra of all five coumarin dyes at the air/water interface resembled a cross between the bulk spectra of coumarin in polar water and non-polar hexane. This is because the dye molecules were positioned partly in the polar water and partly in the non-polar air at the interface. However, the closeness of the spectra to either the spectrum in water or in hexane changed depending on the precise structure of each coumarin dye.

Previously it was thought that, in ordinary cases, molecules experience the same polarity—the average of that of polar water and non-polar air. The spectra Tahara and colleagues measured, however, showed that even molecules having similar structures experience substantially different polarity at the air/water interface.

The researchers found that the different molecules were positioned at slightly different angles at the interface of air and water so have different sections of their structures submerged and are, consequently, in quantitatively different surroundings.

“This work showed that, even at the same air/water interface, the interaction between the solute and solvent is significantly varied,” says Tahara. This means the molecules experience different environments at the interface, similar to being in different solvents from a view point of the stabilization energy. “This fundamental understanding of molecular behavior will be very important when people consider chemical reactivity at liquid interfaces.”

The corresponding author for this highlight is based at the Molecular Spectroscopy Laboratory, RIKEN Advanced Science Institute

1. Sen, S., Yamaguchi, S. & Tahara, T. Different molecules experience different polarities at the air/water interface. Angewandte Chemie International Edition 48, 6439–6442 (2009).

2. Yamaguchi, S. & Tahara, T. Precise electronic ÷(2) spectra of molecules adsorbed at an interface measured by multiplex sum frequency generation. Journal of Physical Chemistry B 108, 19079–19082 (2004).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6068
http://www.researchsea.com

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>