Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interfaces: Different for every molecule

19.10.2009
A novel spectroscopic technique reveals a new fundamental property of air/water interfaces

Contrary to expectations, structurally different molecules can display different solvent properties at an interface between air and water, researchers in Japan have discovered1.

Tahei Tahara and colleagues from the RIKEN Advanced Science Institute in Wako showed that polarity at this interface cannot be defined simply, because it depends on the nature of the solute molecule at the interface.

The finding could have significant consequences for chemistry at interfaces, since the polarity of a molecule’s environment affects how it reacts with other molecules. Fields such as atmospheric science, where air/water interfaces abound, will be particularly affected.

The researchers made their discovery using an interface-selective spectroscopic technique that they developed earlier2. The spectra that the technique produces are of comparable quality to those of bulk solutions, enabling previously impossible comparisons between systems.

The researchers looked at the electronic spectra of five coumarin dyes at the interface between air and water; electronic spectra are essentially a graphical representation of a molecule’s color. Coumarin dyes all share the same basic chemical structure and are used to probe the polarity of solvents because their spectra differ depending on the molecules’ environment.

Tahara and colleagues found that the spectra of all five coumarin dyes at the air/water interface resembled a cross between the bulk spectra of coumarin in polar water and non-polar hexane. This is because the dye molecules were positioned partly in the polar water and partly in the non-polar air at the interface. However, the closeness of the spectra to either the spectrum in water or in hexane changed depending on the precise structure of each coumarin dye.

Previously it was thought that, in ordinary cases, molecules experience the same polarity—the average of that of polar water and non-polar air. The spectra Tahara and colleagues measured, however, showed that even molecules having similar structures experience substantially different polarity at the air/water interface.

The researchers found that the different molecules were positioned at slightly different angles at the interface of air and water so have different sections of their structures submerged and are, consequently, in quantitatively different surroundings.

“This work showed that, even at the same air/water interface, the interaction between the solute and solvent is significantly varied,” says Tahara. This means the molecules experience different environments at the interface, similar to being in different solvents from a view point of the stabilization energy. “This fundamental understanding of molecular behavior will be very important when people consider chemical reactivity at liquid interfaces.”

The corresponding author for this highlight is based at the Molecular Spectroscopy Laboratory, RIKEN Advanced Science Institute

1. Sen, S., Yamaguchi, S. & Tahara, T. Different molecules experience different polarities at the air/water interface. Angewandte Chemie International Edition 48, 6439–6442 (2009).

2. Yamaguchi, S. & Tahara, T. Precise electronic ÷(2) spectra of molecules adsorbed at an interface measured by multiplex sum frequency generation. Journal of Physical Chemistry B 108, 19079–19082 (2004).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6068
http://www.researchsea.com

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>