Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interfaces: Different for every molecule

19.10.2009
A novel spectroscopic technique reveals a new fundamental property of air/water interfaces

Contrary to expectations, structurally different molecules can display different solvent properties at an interface between air and water, researchers in Japan have discovered1.

Tahei Tahara and colleagues from the RIKEN Advanced Science Institute in Wako showed that polarity at this interface cannot be defined simply, because it depends on the nature of the solute molecule at the interface.

The finding could have significant consequences for chemistry at interfaces, since the polarity of a molecule’s environment affects how it reacts with other molecules. Fields such as atmospheric science, where air/water interfaces abound, will be particularly affected.

The researchers made their discovery using an interface-selective spectroscopic technique that they developed earlier2. The spectra that the technique produces are of comparable quality to those of bulk solutions, enabling previously impossible comparisons between systems.

The researchers looked at the electronic spectra of five coumarin dyes at the interface between air and water; electronic spectra are essentially a graphical representation of a molecule’s color. Coumarin dyes all share the same basic chemical structure and are used to probe the polarity of solvents because their spectra differ depending on the molecules’ environment.

Tahara and colleagues found that the spectra of all five coumarin dyes at the air/water interface resembled a cross between the bulk spectra of coumarin in polar water and non-polar hexane. This is because the dye molecules were positioned partly in the polar water and partly in the non-polar air at the interface. However, the closeness of the spectra to either the spectrum in water or in hexane changed depending on the precise structure of each coumarin dye.

Previously it was thought that, in ordinary cases, molecules experience the same polarity—the average of that of polar water and non-polar air. The spectra Tahara and colleagues measured, however, showed that even molecules having similar structures experience substantially different polarity at the air/water interface.

The researchers found that the different molecules were positioned at slightly different angles at the interface of air and water so have different sections of their structures submerged and are, consequently, in quantitatively different surroundings.

“This work showed that, even at the same air/water interface, the interaction between the solute and solvent is significantly varied,” says Tahara. This means the molecules experience different environments at the interface, similar to being in different solvents from a view point of the stabilization energy. “This fundamental understanding of molecular behavior will be very important when people consider chemical reactivity at liquid interfaces.”

The corresponding author for this highlight is based at the Molecular Spectroscopy Laboratory, RIKEN Advanced Science Institute

1. Sen, S., Yamaguchi, S. & Tahara, T. Different molecules experience different polarities at the air/water interface. Angewandte Chemie International Edition 48, 6439–6442 (2009).

2. Yamaguchi, S. & Tahara, T. Precise electronic ÷(2) spectra of molecules adsorbed at an interface measured by multiplex sum frequency generation. Journal of Physical Chemistry B 108, 19079–19082 (2004).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6068
http://www.researchsea.com

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>