Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Intercepted messages reveal cells' inner workings

A pair of molecular biology techniques enables detailed characterization of the gene expression of small numbers of cells

A cell’s RNA content provides a complete snapshot of its gene expression activity so can yield a bonanza of information not only about how that cell functions, but also the disruptions that result from disease or environmental changes.

The cap-analysis of gene expression (CAGE) technique developed by Piero Carninci and his colleagues at the RIKEN Omics Science Center in Yokohama has provided an invaluable tool for such profiling, enabling researchers to compile libraries of partial sequences from a large percentage of cellular RNAs1. However, CAGE requires large quantities of genetic material, limiting its usefulness for more focused cellular analyses. “We have been working with neurons, but there are so many types,” says Carninci. “If we isolate specific populations of fluorescently labeled transgenic neurons, we may obtain no more than several thousand cells.”

Working with an international team of collaborators, Carninci’s group has now developed two CAGE variants that bring such analyses within reach2. The first, nanoCAGE, can be applied to as little as ten nanograms of RNA—5,000-fold less than is needed for standard CAGE. Using nanoCAGE, the investigators could even selectively characterize RNAs from the nucleus, nucleolus and other cellular compartments.

Thanks to cellular splicing mechanisms, a single gene can yield multiple, functionally diverse gene products. However, CAGE and nanoCAGE only characterize the beginning of each RNA molecule, making it hard to identify splice variants. The second technique, CAGEscan, has therefore been adapted to yield sequence data from both ends, and initial demonstrations of this method on cultured liver cells enabled a detailed analysis of architecture and revealed a startling diversity of novel RNA molecules. Many of these arise from within non-protein-coding segments of known genes, and potentially exert yet-unknown regulatory functions.

These two techniques should enable a diverse array of genetics and cell biology studies that were not possible with traditional CAGE. “Analyzing isolated, homogeneous neuron populations from mice and rats is a high priority for us,” says Carninci. “These technologies could also be used on biopsies or samples, where the amount of RNA is generally limited or to look for diagnostic markers in the blood.”

Carninci and his colleagues are also thinking smaller, and attempting to focus their method all the way down to the single-cell level. “Scaling down the technology to a single cell will help solve the issue of how many cell types we have in the body,” he says, “and particularly in the brain, where this issue is especially debated.”

The corresponding author for this highlight is based at the Functional Genomic Technology Team, RIKEN Omics Science Center

1. Shiraki, T., Kondo, S., Katayama, S., Waki, K., Kasukawa, T., Kawaji, H., Kodzius, R., Watahiki, A., Nakamura, M., Arakawa, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proceedings of the National Academy of Sciences USA 100, 15776–15781 (2003).

2. Plessy, C., Bertin, N., Takahashi, H., Simone, R., Salimullah, M., Lassmann, T., Vitezic, M., Severin, J., Olivarius, S., Lazarevic, D. et al. Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nature Methods 7, 528–534 (2010).

gro-pr | Research asia research news
Further information:

Further reports about: CAGE CAGEscan Omics RIKEN RNA RNA molecule Science TV cell type environmental change

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>