Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intercepted messages reveal cells' inner workings

23.08.2010
A pair of molecular biology techniques enables detailed characterization of the gene expression of small numbers of cells

A cell’s RNA content provides a complete snapshot of its gene expression activity so can yield a bonanza of information not only about how that cell functions, but also the disruptions that result from disease or environmental changes.

The cap-analysis of gene expression (CAGE) technique developed by Piero Carninci and his colleagues at the RIKEN Omics Science Center in Yokohama has provided an invaluable tool for such profiling, enabling researchers to compile libraries of partial sequences from a large percentage of cellular RNAs1. However, CAGE requires large quantities of genetic material, limiting its usefulness for more focused cellular analyses. “We have been working with neurons, but there are so many types,” says Carninci. “If we isolate specific populations of fluorescently labeled transgenic neurons, we may obtain no more than several thousand cells.”

Working with an international team of collaborators, Carninci’s group has now developed two CAGE variants that bring such analyses within reach2. The first, nanoCAGE, can be applied to as little as ten nanograms of RNA—5,000-fold less than is needed for standard CAGE. Using nanoCAGE, the investigators could even selectively characterize RNAs from the nucleus, nucleolus and other cellular compartments.

Thanks to cellular splicing mechanisms, a single gene can yield multiple, functionally diverse gene products. However, CAGE and nanoCAGE only characterize the beginning of each RNA molecule, making it hard to identify splice variants. The second technique, CAGEscan, has therefore been adapted to yield sequence data from both ends, and initial demonstrations of this method on cultured liver cells enabled a detailed analysis of architecture and revealed a startling diversity of novel RNA molecules. Many of these arise from within non-protein-coding segments of known genes, and potentially exert yet-unknown regulatory functions.

These two techniques should enable a diverse array of genetics and cell biology studies that were not possible with traditional CAGE. “Analyzing isolated, homogeneous neuron populations from mice and rats is a high priority for us,” says Carninci. “These technologies could also be used on biopsies or samples, where the amount of RNA is generally limited or to look for diagnostic markers in the blood.”

Carninci and his colleagues are also thinking smaller, and attempting to focus their method all the way down to the single-cell level. “Scaling down the technology to a single cell will help solve the issue of how many cell types we have in the body,” he says, “and particularly in the brain, where this issue is especially debated.”

The corresponding author for this highlight is based at the Functional Genomic Technology Team, RIKEN Omics Science Center

1. Shiraki, T., Kondo, S., Katayama, S., Waki, K., Kasukawa, T., Kawaji, H., Kodzius, R., Watahiki, A., Nakamura, M., Arakawa, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proceedings of the National Academy of Sciences USA 100, 15776–15781 (2003).

2. Plessy, C., Bertin, N., Takahashi, H., Simone, R., Salimullah, M., Lassmann, T., Vitezic, M., Severin, J., Olivarius, S., Lazarevic, D. et al. Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nature Methods 7, 528–534 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6374
http://www.researchsea.com

Further reports about: CAGE CAGEscan Omics RIKEN RNA RNA molecule Science TV cell type environmental change

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>