Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interactions between substances determine allergenic potential

21.12.2011
Scientists at the University of Gothenburg, Sweden, have used advanced light microscopy to show that a substance can be differently absorbed by the skin, depending on what it is mixed with. This may determine whether it causes contact allergy or not.

"We have also been able to identify specific cells and proteins in the skin with which a contact allergen interacts. The results increase our understanding of the mechanisms behind contact allergy", says Carl Simonsson at the Department of Chemistry, University of Gothenburg.

The skin is the largest organ in the human body and plays many vital roles, one of which is to prevent harmful microorganisms from invading the body. The principal barrier is constituted by a layer of skin cells around a few microns thick, known as the "stratum corneum". Despite being so thin, this layer effectively protects us from e.g. bacteria and viruses.

The skin, however, is not adapted to deal with and prevent absorption of many of the chemicals that we are exposed to today. This may lead to various types of diseases, such as contact allergy, which affects approximately 20% of people in Sweden.

The work presented in Carl Simonsson's thesis describes the use of an advanced form of light microscopy known as "two-photon microscopy", which makes it possible to follow substances absorbed into the skin. The method is unique in that it allows us to see not only how well a substance is absorbed, but also what happens to it, and the location in the skin that the substance eventually comes to.

The skin barrier and the way in which various substances are absorbed are highly significant also for the development of new drugs. Creams and ointments are for many reasons an interesting alternative to tablets, which have to be taken by mouth. The barrier properties of the skin may in this case present an obstacle to drug absorption, making it difficult for sufficient amounts of the drug to penetrate the skin to give a clinical effect.

"We have used two-photon microscopy to study a new type of ointment that it may be possible to use to improve the absorption, and thus the clinical effect, of certain drugs that are used on the skin", says Carl Simonsson.

The thesis has been successfully defended.

This PhD project has been conducted under the auspices of the Centre for Skin Research, SkinResGU (http://www.skin.org.gu.se), which is a newly formed multidisciplinary research centre at the University of Gothenburg and Chalmers University of Technology, focused on investigating the molecular processes that are involved when the skin is exposed to drugs, chemicals, nanoparticles and radiation.

Carl Simonsson | EurekAlert!
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>