Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interactions between substances determine allergenic potential

21.12.2011
Scientists at the University of Gothenburg, Sweden, have used advanced light microscopy to show that a substance can be differently absorbed by the skin, depending on what it is mixed with. This may determine whether it causes contact allergy or not.

"We have also been able to identify specific cells and proteins in the skin with which a contact allergen interacts. The results increase our understanding of the mechanisms behind contact allergy", says Carl Simonsson at the Department of Chemistry, University of Gothenburg.

The skin is the largest organ in the human body and plays many vital roles, one of which is to prevent harmful microorganisms from invading the body. The principal barrier is constituted by a layer of skin cells around a few microns thick, known as the "stratum corneum". Despite being so thin, this layer effectively protects us from e.g. bacteria and viruses.

The skin, however, is not adapted to deal with and prevent absorption of many of the chemicals that we are exposed to today. This may lead to various types of diseases, such as contact allergy, which affects approximately 20% of people in Sweden.

The work presented in Carl Simonsson's thesis describes the use of an advanced form of light microscopy known as "two-photon microscopy", which makes it possible to follow substances absorbed into the skin. The method is unique in that it allows us to see not only how well a substance is absorbed, but also what happens to it, and the location in the skin that the substance eventually comes to.

The skin barrier and the way in which various substances are absorbed are highly significant also for the development of new drugs. Creams and ointments are for many reasons an interesting alternative to tablets, which have to be taken by mouth. The barrier properties of the skin may in this case present an obstacle to drug absorption, making it difficult for sufficient amounts of the drug to penetrate the skin to give a clinical effect.

"We have used two-photon microscopy to study a new type of ointment that it may be possible to use to improve the absorption, and thus the clinical effect, of certain drugs that are used on the skin", says Carl Simonsson.

The thesis has been successfully defended.

This PhD project has been conducted under the auspices of the Centre for Skin Research, SkinResGU (http://www.skin.org.gu.se), which is a newly formed multidisciplinary research centre at the University of Gothenburg and Chalmers University of Technology, focused on investigating the molecular processes that are involved when the skin is exposed to drugs, chemicals, nanoparticles and radiation.

Carl Simonsson | EurekAlert!
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>