Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interaction with neighbors: Neuronal field simulates brain activity

27.09.2010
Modeling propagating activity waves

The appearance of a spot of light on the retina causes sudden activation of millions of neurons in the brain within tenths of milliseconds. At the first cortical processing stage, the primary visual cortex, each neuron thereby receives thousands of inputs from both close neighbors and further distant neurons, and also sends-out an equal amount of output to others. During the recent decades, individual characteristics of these widespread network connections and the specific transfer characteristics of single neurons have been widely derived.

However, a coherent population model approach that provides an overall picture of the functional dynamics, subsuming interactions across all these individual channels, is still lacking.RUB Scientists of the Bernstein Group for Computational Neuroscience developed a computational model which allows a mathematical description of far reaching interactions between cortical neurons. The results are published in the prestigious open-access Journal PLoS Computational Biology.

Cortical activity waves and their possible consequences for visual perception

By means of fluorescent dye that reports voltage changes across neuronal membranes it has been shown how a small spot of light, presented in the visual field, leads to initially local brain activation followed by far distant traveling waves of activity. At first, these waves remain subthreshold and hence, cannot be perceived consciously. However, a briefly following elongated bar stimulus leads to facilitation of the initiated activity wave. Instead perceiving the bar at once in its full length, it appears to be drawn-out from the location of the previously flashed spot. In psychology this phenomenon has been named ‘line-motion illusion’ since motion is perceived even though both stimuli are displayed stationary. Thus, brain processes that initiate widespread activity propagation may be partly responsible for this motion illusion.

Neural Fields

RUB Scientists around Dr. Dirk Jancke, Institut für Neuroinformatik, have now successfully implemented these complex interaction dynamics within a computational model. A so-called neural field was used in which the impact of each model neuron is defined by its distant-dependent interaction radius: close neighbors are strongly coupled and further distant neurons are gradually less interacting. Two layers one excitatory, one inhibitory, are recurrently connected such that a local input leads to transient activity that emerges focally followed by propagating activity. Therefore, the entire field dynamics are no longer determined by the sensory input alone but governed to a wide extent by the interaction profile across the neural field. Consequently, within such a model, the overall activity pattern is characterized by interactions that facilitate distant pre-activation far away from any local input.

Such pre-activation may play an important role during processing of moving objects. Given that processing takes time starting from the retina, the brain receives information about the external world with a permanent delay. In order to counterbalance such delays, pre-activation may serve a “forewarning” of neurons that represent locations ahead of an object trajectory and thus, may enable a more rapid crossing of firing thresholds to save important processing times.

What can we generally learn from such a field model regarding brain function? Neural fields allow for a mathematical framework of how the brain operates beyond a simple passive mapping of external events but conducts inter-“active” information processing leading, in limit cases, to what we call illusions. The future challenge will be to implement neural fields for more complex visual stimulus scenarios. Here, it may be an important advantage that this model class allows abstraction from single neuron activity and provides a mathematically handable description in terms of interactive cortical network functioning.

Titles

Markounikau V, Igel C, Grinvald A, Jancke D (2010). A Dynamic neural field model of mesoscopic cortical activity captured with voltage-sensitive dye Imaging. PLoS Comput Biol 6, e1000919. doi:10.1371/journal.pcbi.1000919.

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000919

Dr. Dirk Jancke
Bernstein Group for Computational Neuroscience
Institut für Neuroinformatik ND 03/70
Ruhr-Universität Bochum
Universitätstr. 150
D-44780 Bochum, Germany
Tel: +49 234 32 27845
Fax: +49 234 32 14209
Email: jancke@neurobiologie.rub.de

Dr. Josef König | idw
Further information:
http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000919

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>