Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Interaction with neighbors: Neuronal field simulates brain activity

Modeling propagating activity waves

The appearance of a spot of light on the retina causes sudden activation of millions of neurons in the brain within tenths of milliseconds. At the first cortical processing stage, the primary visual cortex, each neuron thereby receives thousands of inputs from both close neighbors and further distant neurons, and also sends-out an equal amount of output to others. During the recent decades, individual characteristics of these widespread network connections and the specific transfer characteristics of single neurons have been widely derived.

However, a coherent population model approach that provides an overall picture of the functional dynamics, subsuming interactions across all these individual channels, is still lacking.RUB Scientists of the Bernstein Group for Computational Neuroscience developed a computational model which allows a mathematical description of far reaching interactions between cortical neurons. The results are published in the prestigious open-access Journal PLoS Computational Biology.

Cortical activity waves and their possible consequences for visual perception

By means of fluorescent dye that reports voltage changes across neuronal membranes it has been shown how a small spot of light, presented in the visual field, leads to initially local brain activation followed by far distant traveling waves of activity. At first, these waves remain subthreshold and hence, cannot be perceived consciously. However, a briefly following elongated bar stimulus leads to facilitation of the initiated activity wave. Instead perceiving the bar at once in its full length, it appears to be drawn-out from the location of the previously flashed spot. In psychology this phenomenon has been named ‘line-motion illusion’ since motion is perceived even though both stimuli are displayed stationary. Thus, brain processes that initiate widespread activity propagation may be partly responsible for this motion illusion.

Neural Fields

RUB Scientists around Dr. Dirk Jancke, Institut für Neuroinformatik, have now successfully implemented these complex interaction dynamics within a computational model. A so-called neural field was used in which the impact of each model neuron is defined by its distant-dependent interaction radius: close neighbors are strongly coupled and further distant neurons are gradually less interacting. Two layers one excitatory, one inhibitory, are recurrently connected such that a local input leads to transient activity that emerges focally followed by propagating activity. Therefore, the entire field dynamics are no longer determined by the sensory input alone but governed to a wide extent by the interaction profile across the neural field. Consequently, within such a model, the overall activity pattern is characterized by interactions that facilitate distant pre-activation far away from any local input.

Such pre-activation may play an important role during processing of moving objects. Given that processing takes time starting from the retina, the brain receives information about the external world with a permanent delay. In order to counterbalance such delays, pre-activation may serve a “forewarning” of neurons that represent locations ahead of an object trajectory and thus, may enable a more rapid crossing of firing thresholds to save important processing times.

What can we generally learn from such a field model regarding brain function? Neural fields allow for a mathematical framework of how the brain operates beyond a simple passive mapping of external events but conducts inter-“active” information processing leading, in limit cases, to what we call illusions. The future challenge will be to implement neural fields for more complex visual stimulus scenarios. Here, it may be an important advantage that this model class allows abstraction from single neuron activity and provides a mathematically handable description in terms of interactive cortical network functioning.


Markounikau V, Igel C, Grinvald A, Jancke D (2010). A Dynamic neural field model of mesoscopic cortical activity captured with voltage-sensitive dye Imaging. PLoS Comput Biol 6, e1000919. doi:10.1371/journal.pcbi.1000919.

Dr. Dirk Jancke
Bernstein Group for Computational Neuroscience
Institut für Neuroinformatik ND 03/70
Ruhr-Universität Bochum
Universitätstr. 150
D-44780 Bochum, Germany
Tel: +49 234 32 27845
Fax: +49 234 32 14209

Dr. Josef König | idw
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>