Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interaction with neighbors: Neuronal field simulates brain activity

27.09.2010
Modeling propagating activity waves

The appearance of a spot of light on the retina causes sudden activation of millions of neurons in the brain within tenths of milliseconds. At the first cortical processing stage, the primary visual cortex, each neuron thereby receives thousands of inputs from both close neighbors and further distant neurons, and also sends-out an equal amount of output to others. During the recent decades, individual characteristics of these widespread network connections and the specific transfer characteristics of single neurons have been widely derived.

However, a coherent population model approach that provides an overall picture of the functional dynamics, subsuming interactions across all these individual channels, is still lacking.RUB Scientists of the Bernstein Group for Computational Neuroscience developed a computational model which allows a mathematical description of far reaching interactions between cortical neurons. The results are published in the prestigious open-access Journal PLoS Computational Biology.

Cortical activity waves and their possible consequences for visual perception

By means of fluorescent dye that reports voltage changes across neuronal membranes it has been shown how a small spot of light, presented in the visual field, leads to initially local brain activation followed by far distant traveling waves of activity. At first, these waves remain subthreshold and hence, cannot be perceived consciously. However, a briefly following elongated bar stimulus leads to facilitation of the initiated activity wave. Instead perceiving the bar at once in its full length, it appears to be drawn-out from the location of the previously flashed spot. In psychology this phenomenon has been named ‘line-motion illusion’ since motion is perceived even though both stimuli are displayed stationary. Thus, brain processes that initiate widespread activity propagation may be partly responsible for this motion illusion.

Neural Fields

RUB Scientists around Dr. Dirk Jancke, Institut für Neuroinformatik, have now successfully implemented these complex interaction dynamics within a computational model. A so-called neural field was used in which the impact of each model neuron is defined by its distant-dependent interaction radius: close neighbors are strongly coupled and further distant neurons are gradually less interacting. Two layers one excitatory, one inhibitory, are recurrently connected such that a local input leads to transient activity that emerges focally followed by propagating activity. Therefore, the entire field dynamics are no longer determined by the sensory input alone but governed to a wide extent by the interaction profile across the neural field. Consequently, within such a model, the overall activity pattern is characterized by interactions that facilitate distant pre-activation far away from any local input.

Such pre-activation may play an important role during processing of moving objects. Given that processing takes time starting from the retina, the brain receives information about the external world with a permanent delay. In order to counterbalance such delays, pre-activation may serve a “forewarning” of neurons that represent locations ahead of an object trajectory and thus, may enable a more rapid crossing of firing thresholds to save important processing times.

What can we generally learn from such a field model regarding brain function? Neural fields allow for a mathematical framework of how the brain operates beyond a simple passive mapping of external events but conducts inter-“active” information processing leading, in limit cases, to what we call illusions. The future challenge will be to implement neural fields for more complex visual stimulus scenarios. Here, it may be an important advantage that this model class allows abstraction from single neuron activity and provides a mathematically handable description in terms of interactive cortical network functioning.

Titles

Markounikau V, Igel C, Grinvald A, Jancke D (2010). A Dynamic neural field model of mesoscopic cortical activity captured with voltage-sensitive dye Imaging. PLoS Comput Biol 6, e1000919. doi:10.1371/journal.pcbi.1000919.

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000919

Dr. Dirk Jancke
Bernstein Group for Computational Neuroscience
Institut für Neuroinformatik ND 03/70
Ruhr-Universität Bochum
Universitätstr. 150
D-44780 Bochum, Germany
Tel: +49 234 32 27845
Fax: +49 234 32 14209
Email: jancke@neurobiologie.rub.de

Dr. Josef König | idw
Further information:
http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000919

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>