Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intentional variation increases result validity in mouse testing

10.03.2010
For decades, the traditional practice in animal testing has been standardization, but a study involving Purdue University has shown that adding as few as two controlled environmental variables to preclinical mice tests can greatly reduce costly false positives, the number of animals needed for testing and the cost of pharmaceutical trials.

Joseph Garner, a Purdue assistant professor of animal sciences, said the finding challenges the assumption in drug discovery and related fields that animal experiments should eliminate all variables. He said that despite standardization efforts, two experiments in different labs could never truly be exactly the same because of uncontrollable variables such as the scent of the researchers or background noises.

"Human drug trials get around this problem by deliberately including variability in the experiment in a controlled manner so that the effect of a drug can be tested across a variable human population," Garner said.

Garner and his co-authors compared results from multiple mice experiments set up in a standardized manner against multiple experiments set up with controlled variables as if the mice were people.

"Overall, the differences between experiments are much, much greater in the standardized setups than in the ones where we deliberately varied the environment as if the experiment was a human drug trial," said Garner, whose results were published in the current issue of the journal Nature Methods. "In fact, the traditional standardized experiments generally disagreed with each other, while the experiments designed like a human drug trial generally agreed with each other."

The study is a follow-up of another published last year in Nature Methods in which Garner, Hanno Würbel, a co-author on the papers and professor at the University of Giessen in Germany, and Helene Richter, Würbel's graduate student, suggested that adding controlled variation to animal experiments would lead to more accurate results. Garner said the original study, which demonstrated the idea in principle, had met resistance because it was unclear what environmental features scientists should vary to improve study results.

"In theory, if you introduce enough variables, it shouldn't matter what they are because you create spread in the mice. But other scientists were reasonable to ask whether this would be a practical approach. So, in this experiment, we wanted to address this concern and see whether it was logistically feasible to add enough variation to make the approach work." Garner said. "We were surprised by how little variation we needed to add. In fact, we found that using as few as two variables, regardless of what we actually varied, was enough to virtually eliminate disagreement between laboratories. Given our previous results, this should reduce the incidence of false positives five to tenfold."

Reducing false positives could be worth billions of dollars in the pharmaceutical industry where the cost of human clinical trials is high. Garner said about 90 percent of drugs thought to be effective in mice fail in human trials. Reducing the number of drugs that won't be successful could eliminate hundreds of millions of dollars per drug in some cases and reduce the cost of research and development.

"The real cost of producing a drug is the cost of all the drugs that were tested and failed at the same time, and this cost is passed on to the consumer," Garner said. "Weeding out these failures in animal trials could transform the economics of drug development."

Garner analyzed data from a series of behavioral tests Würbel performed in Germany. The tests compared behaviors commonly used in drug and gene discovery between two strains of mice. The experiment was repeated in four different model laboratories, each of which differed according to variables such as background noise, the age of the mice, lighting levels and cage size. In each laboratory, standardized mice were treated identically - as they would be in a traditional experiment – while heterogenized mice were tested in four different conditions made by varying two environmental variables in a controlled manner, just like a human drug trial.

Mice from the same strain should have exhibited the same behavior in each laboratory, such as showing fear and curiosity. However, in 33 of the 36 behavioral characteristics, variation was lower in the heterogenized design than the standardized design, and, on average, the standardized group exhibited as much as five times the variation between laboratories as the heterogenized group.

"The reason why this happens is because when you keep everything standardized, the variation is very low within the lab, but the variation between labs is huge and unpredictable," Garner said. "You would have to do the same experiment in many standardized labs to really know the true result, or you could do it in one lab with a heterogenized design, like a human drug trial, to find the true result. This is a win-win because you need to use far few animals, and you get a much better understanding of whether, for instance, a drug really does have an effect that is replicable."

Garner said the next step in the research is to do the same experiments in different labs across Europe to eliminate the simulation of labs in the experiment. The German Research Foundation funded the study.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Source: Joseph Garner, 765-494-1780, jgarner@purdue.edu

Ag Communications: (765) 494-8415;
Steve Leer, sleer@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>