Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Insular cortex alterations in mouse models of autism


Scientists unravel a neural circuit that could play an important role in autism

The insular cortex is an integral “hub”, combining sensory, emotional and cognitive content. Not surprisingly, alterations in insular structure and function have been reported in many psychiatric disorders, such as anxiety disorders, depression, addiction and autism spectrum disorders (ASD).

Scientists from Harvard University and the Max-Planck Institute of Neurobiology in Martinsried now describe consistent alterations in integrative processing of the insular cortex across autism mouse models of diverse etiologies. In particular, the delicate balance between excitation and inhibition in the autistic brains was disturbed, but could be pharmacologically re-adjusted. The results could help the development of novel diagnostic and therapeutic strategies.

The insular cortex of an autism mouse model is already so strongly activated by a single sensory modality (here a sound), that it is unable to perform its role in integrating information from multiple sources.

© MPI of Neurobiology / Gogolla

Autism is a neurodevelopmental disorder characterized by impaired social interaction, verbal and non-verbal communication, and by restricted and repetitive behaviors. Diagnosis is solely based on behavioral analysis as biological markers and neurological underpinnings remain unknown. This makes the development of novel therapeutic strategies extremely difficult. 

As the cellular basis of autism spectrum disorders cannot be addressed in human patients, scientists have developed a number of mouse models for the disease. Similar to humans, mice are social animals and communicate through species-specific vocalizations. The mouse models harbor all diagnostic hallmark criteria of autism, such as repetitive, stereotypic behaviors and deficits in social interactions and communication.

Nadine Gogolla and her colleagues in the laboratory of Takao Hensch at Harvard University have now searched for common neural circuit alterations in mouse models of autism. They concentrated on the insular cortex, a brain structure that contributes to social, emotional and cognitive functions. ‘We wanted to know whether we can detect differences in the way the insular cortex processes information in healthy or autism-like mice’, says Nadine Gogolla, who was recently appointed Leader of a Research Group at the Max Planck Institute of Neurobiology.

As the researchers now report, the insular cortex of healthy mice integrates stimuli from different sensory modalities and reacts more strongly when two different stimuli are presented concomitantly (e.g. a sound and a touch).

‘We recognize a rose more easily when we smell and see it rather than when we just see or smell it’ says Nadine Gogolla. This capacity of combining sensory stimuli was consistently affected in all autism models the researchers looked at. Interestingly, often one sense alone elicited such a strong response that adding a second modality did not add further information. This is very reminiscent of the sensory hyper-responsiveness experienced by many autistic patients. The scientist further discovered that the insular cortex of adult autism-model mice resembled the activation patterns observed in very young control mice. ‘It seemed as if the insular cortex of the autism-models did not mature properly after birth’, says Gogolla.

For proper brain function, excitation and inhibition have to be in equilibrium. In the now identified part of the insular cortex, the scientists found that this equilibrium was disturbed. In one of the mouse models, inhibitory contacts between nerve cells were strongly reduced.

To test the influence of this reduction on sensory processing, the researchers gave mice the drug Diazepam, which is also known under the trade name Valium, to boost inhibitory transmission in the brain. Indeed, this treatment transiently rescued the capacity of the insular cortex to combine stimuli of different sensory modalities. The balance between excitation and inhibition in the brain is established after birth.

The scientists thus treated young animals over several days with Diazepam. This treatment was efficient in reestablishing the insular cortex capacity for sensory integration permanently, even in adult mice that did not received any further treatment.  Interestingly, also the stereotypic grooming of the animals was significantly reduced.

All autism models investigated showed alterations in inhibitory molecules. However, the alterations were very diverse. While in some models certain molecules were reduced, the opposite was true in another model. These results suggest that the disequilibrium between excitation and inhibition may be an important factor in the neuropathology of autism.

However, future therapies will need to be carefully tailored to each particular subgroup of autism. For instance, an artificial boost of inhibition through a drug like Diazepam in healthy mice can throw the delicate equilibrium off and create changes in the insular cortex similar to those seen in the autism models.

Whether a therapeutic strategy aimed on keeping the brain's equilibrium between excitation and inhibition could be useful and if so, how to test the individuals' status of the excitation/inhibition balance and how to implement individually tailored treatments, would need to be established through further studies and pre-clinical tests.


Dr. Stefanie Merker

Max Planck Institute of Neurobiology, Martinsried

Phone: +49 89 8578-3514
Fax: +49 89 89950-022


Dr. Nadine Gogolla

Max Planck Institute of Neurobiology, Martinsried

Phone: +49 89 8578-3493


Original publication

Nadine Gogolla, Anne E. Takesian, Guoping Feng, Michela Fagiolini, Takao K. Hensch
Sensory integration in mouse insular cortex reflects GABA circuit maturation
Neuron, 31 July 2014 

Dr. Stefanie Merker | Max-Planck-Institute

Further reports about: Neurobiology alterations disorders equilibrium healthy inhibitory models sensory stimuli therapeutic

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>