Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insular cortex alterations in mouse models of autism

01.08.2014

Scientists unravel a neural circuit that could play an important role in autism

The insular cortex is an integral “hub”, combining sensory, emotional and cognitive content. Not surprisingly, alterations in insular structure and function have been reported in many psychiatric disorders, such as anxiety disorders, depression, addiction and autism spectrum disorders (ASD).

Scientists from Harvard University and the Max-Planck Institute of Neurobiology in Martinsried now describe consistent alterations in integrative processing of the insular cortex across autism mouse models of diverse etiologies. In particular, the delicate balance between excitation and inhibition in the autistic brains was disturbed, but could be pharmacologically re-adjusted. The results could help the development of novel diagnostic and therapeutic strategies.


The insular cortex of an autism mouse model is already so strongly activated by a single sensory modality (here a sound), that it is unable to perform its role in integrating information from multiple sources.

© MPI of Neurobiology / Gogolla

Autism is a neurodevelopmental disorder characterized by impaired social interaction, verbal and non-verbal communication, and by restricted and repetitive behaviors. Diagnosis is solely based on behavioral analysis as biological markers and neurological underpinnings remain unknown. This makes the development of novel therapeutic strategies extremely difficult. 

As the cellular basis of autism spectrum disorders cannot be addressed in human patients, scientists have developed a number of mouse models for the disease. Similar to humans, mice are social animals and communicate through species-specific vocalizations. The mouse models harbor all diagnostic hallmark criteria of autism, such as repetitive, stereotypic behaviors and deficits in social interactions and communication.

Nadine Gogolla and her colleagues in the laboratory of Takao Hensch at Harvard University have now searched for common neural circuit alterations in mouse models of autism. They concentrated on the insular cortex, a brain structure that contributes to social, emotional and cognitive functions. ‘We wanted to know whether we can detect differences in the way the insular cortex processes information in healthy or autism-like mice’, says Nadine Gogolla, who was recently appointed Leader of a Research Group at the Max Planck Institute of Neurobiology.

As the researchers now report, the insular cortex of healthy mice integrates stimuli from different sensory modalities and reacts more strongly when two different stimuli are presented concomitantly (e.g. a sound and a touch).

‘We recognize a rose more easily when we smell and see it rather than when we just see or smell it’ says Nadine Gogolla. This capacity of combining sensory stimuli was consistently affected in all autism models the researchers looked at. Interestingly, often one sense alone elicited such a strong response that adding a second modality did not add further information. This is very reminiscent of the sensory hyper-responsiveness experienced by many autistic patients. The scientist further discovered that the insular cortex of adult autism-model mice resembled the activation patterns observed in very young control mice. ‘It seemed as if the insular cortex of the autism-models did not mature properly after birth’, says Gogolla.

For proper brain function, excitation and inhibition have to be in equilibrium. In the now identified part of the insular cortex, the scientists found that this equilibrium was disturbed. In one of the mouse models, inhibitory contacts between nerve cells were strongly reduced.

To test the influence of this reduction on sensory processing, the researchers gave mice the drug Diazepam, which is also known under the trade name Valium, to boost inhibitory transmission in the brain. Indeed, this treatment transiently rescued the capacity of the insular cortex to combine stimuli of different sensory modalities. The balance between excitation and inhibition in the brain is established after birth.

The scientists thus treated young animals over several days with Diazepam. This treatment was efficient in reestablishing the insular cortex capacity for sensory integration permanently, even in adult mice that did not received any further treatment.  Interestingly, also the stereotypic grooming of the animals was significantly reduced.

All autism models investigated showed alterations in inhibitory molecules. However, the alterations were very diverse. While in some models certain molecules were reduced, the opposite was true in another model. These results suggest that the disequilibrium between excitation and inhibition may be an important factor in the neuropathology of autism.

However, future therapies will need to be carefully tailored to each particular subgroup of autism. For instance, an artificial boost of inhibition through a drug like Diazepam in healthy mice can throw the delicate equilibrium off and create changes in the insular cortex similar to those seen in the autism models.

Whether a therapeutic strategy aimed on keeping the brain's equilibrium between excitation and inhibition could be useful and if so, how to test the individuals' status of the excitation/inhibition balance and how to implement individually tailored treatments, would need to be established through further studies and pre-clinical tests.

Contact 

Dr. Stefanie Merker

Max Planck Institute of Neurobiology, Martinsried

Phone: +49 89 8578-3514
Fax: +49 89 89950-022

 

Dr. Nadine Gogolla

Max Planck Institute of Neurobiology, Martinsried

Phone: +49 89 8578-3493

 

Original publication

 
Nadine Gogolla, Anne E. Takesian, Guoping Feng, Michela Fagiolini, Takao K. Hensch
Sensory integration in mouse insular cortex reflects GABA circuit maturation
Neuron, 31 July 2014 

Dr. Stefanie Merker | Max-Planck-Institute

Further reports about: Neurobiology alterations disorders equilibrium healthy inhibitory models sensory stimuli therapeutic

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>