Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Instant Evolution in Whiteflies: Just Add Bacteria

08.04.2011
In a case of rapid evolution, bacteria have been found to give whiteflies – crop-damaging insects of global importance – an edge over their uninfected peers, new research from the University of Arizona suggests.

In just six years, bacteria in the genus Rickettsia spread through a population of the sweet potato whitefly (Bemisia tabaci), an invasive pest of global importance. Infected insects lay more eggs, develop faster and are more likely to survive to adulthood compared to their uninfected peers. The discoveries were made by a University of Arizona-led team of scientists and are published in the April 8 issue of the journal Science.

"It's instant evolution," said Molly Hunter, a professor of entomology in the UA's College of Agriculture and Life Sciences and the study's principal investigator. "Our lab studies suggest that these bacteria can transform an insect population over a very short time."

"It is not uncommon to find a microbe providing some benefits to their hosts, but the magnitude of fitness benefits we found is unusual," she added.

In addition to the observed evolutionary advantages – which biologists call fitness benefits – Hunter's team discovered that the bacteria manipulate the sex ratio of the whiteflies' offspring by causing more females to be born than males.

According to Hunter, the bacteria are transmitted only through the maternal lineage (from mother to offspring). Therefore, it is beneficial for them to make sure more female than male whiteflies are born.

"However, we don't know how they're doing that yet," she said.

Anna Himler, a postdoctoral research associate in Hunter's lab and the lead author on the research paper, said her team was most surprised by the speed with which the bacteria moved through the whitefly population.

In 2000, the researchers found Rickettsia in only 1 percent of the whiteflies in Arizona. In 2003, the microbes had spread through half of the population, and today, almost all whiteflies in Arizona contain the bacterium.

Whiteflies come in many different species and variants within species called biotypes. Of those, none are considered as detrimental to agriculture as the "B Biotype" of the sweet potato whitefly, which originated in the Mediterranean.

Contrary to what their name implies, whiteflies belong to an order of insects known as Hemiptera and are related to aphids and true bugs. Like their kin, they puncture their host plants and suck out the sugary sap. In addition to stripping the plant of nutrients, larvae and adults produce copious amounts of honeydew, which attracts mold and leads to damage of the leaves. Finally, whiteflies transmit plant viruses; in the case of the sweet potato whitefly, more than a hundred different kinds.

Compared to the vast majority of whiteflies, which are highly specialized and feed only on particular host plants, the sweet potato whitefly feeds on more than 600 host plants, which means it can move from one plant to another through the seasons.

"Here in Arizona, it probably starts out on weeds in the spring, and then moves on to melons, and when melons are done, it moves in big numbers onto cotton and feeds on that all summer long," Hunter explained. "In the fall, it moves on to vegetables, and so it just keeps going."

What whiteflies lack in body size – they are about one-sixteenth of an inch long – they make up for in numbers. Whiteflies can colonize a host plant in large numbers and blanket leaves with larvae and sticky honeydew in a short time."

"In the late 1980s and early 1990s, when this new biotype arrived in the Southwest, the population just exploded," Hunter said. "Sometimes you could see clouds of whiteflies in the air, gumming up windshields. With integrated pest management practices, many developed by colleagues here at the UA, their impact has decreased tremendously, but they still are the worst pest in Arizona's cotton industry. If it wasn't for whiteflies, farmers would be spraying cotton a lot less."

The team is now trying to explain how Rickettsia increases whitefly fitness. In one conceivable scenario, the bacteria might turn down the plant defenses in an effort to make it easier for the whitefly to feed on the plant.

Himler said that because studies done elsewhere suggested fitness differences were not important, her team initially believed that in order for the microbes to spread so rapidly through the population, the whiteflies must pass them on through horizontal transfer (from individual to individual) rather than through vertical transfer (from mother to offspring).

"So we did this big horizontal transmission experiment but found almost nothing. At the same time, we saw these incredible differences between the Rickettsia-positive and Rickettsia-negative whitefly cultures. In evolution, fitness is the money. So I just saved a couple of leaves from my plants from the horizontal transmission experiment and thought, let's look at the offspring. Even though I only had a few leaves, the effect was strong. We found many more offspring coming from the Rickettsia-positive plants than from the control plants."

"Rickettsia-infected whiteflies lay more eggs, more of those eggs survive, and there is the reproductive manipulation toward producing more female than male offspring. These effects are not unheard of, but the strength that we found here is unusual."

According to Hunter, the interaction between host and bacteria is a tug-of-war between a positive and negative effect.

"In general, taking the sex ratio control away from the host is not a good thing for the host," she said. There is a reason why most living organisms have roughly equal proportions of sexes. If there were more females, then any individual producing more males would produce more progeny. This is one of the reasons a one-to-one sex ratio is really common in nature."

The team believes that discovering how profoundly and how fast microbes can change a population of a pest of global importance has implications for pest management strategies.

"It would be interesting to see if by having a microbe that has this big effect in one direction, if you could make it so that it has an effect in the other direction, to help control the pest," Hunter said. "Could we use symbionts in a way to make things less of a problem, to manage pest populations in a more sustainable way?"

LINKS:
The report,"Rapid Spread of a Bacterial Symbiont in an Invasive Whitefly Is Driven by Fitness Benefits and Female Bias," is online at:

http://www.sciencemag.org/content/332/6026/254.abstract?sid=bd02b598-351d-474c-9971-1947fe676bb7

CONTACTS:

Martha (Molly) S. Hunter
Department of Entomology
The University of Arizona
520-621-9350
mhunter@ag.arizona.edu
Daniel Stolte
University Communications
The University of Arizona
520-626-4402
stolte@email.arizona.edu

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>