Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inspired by genetics, chemistry finally takes hold of its own code

20.08.2012
Through the fundamental work carried out by a team from the University of Geneva and the NCCR Chemical Biology, chemists may be able to attain more complex supramolecular structures

Nature proves every day that it is both complex and efficient. Organic chemists are envious of it; their conventional tools confine them to simpler achievements. Thanks to the work of professor Stefan Matile's team from the University of Geneva, these limitations could become a thing of the past. His publication in the Nature Chemistry journal indeed offers a new kind of code to chemists, allowing them to access new levels of complexity.

Stefan Matile opts for sincerity. For him, if organic chemistry is often fond of simplifying its functional systems, it is because it is mostly impossible for it to construct and manage molecular architectures as complex as those produced with tremendous efficiency in nature. "It's a fact", says the UNIGE professor and NCCR Chemical Biology member, "that we are far from being able to match the genius of nature."

Where the complexity arises

The specialist attributes the genetic code to this genius of nature. "It is rather simple because it is based on four foundations—adenine, cytosine, guanine, and thymine (A, C, G, and T). The double helix structure of DNA is also quite simple. The complexity arises mainly from the cell's transfer of this information from one stage to the next."
Stefan Matile has long believed that a code also exists in organic chemistry and must be discovered, which he is convinced he has achieved with the assistance of his colleague, Edvinas Orentas.

"I must admit that this work is extremely complicated, fundamental, and theoretical," the professor continues. "But I also think it's quite revolutionary, especially if we are able to implement it on a practical level."

Laying the foundation

In fact, thanks to him, organic chemists may be able to stop laboriously constructing their functional systems, atom by atom, link by link. The code would allow them to write two-dimensional maps, a relatively simple and manageable challenge. The complexity of three-dimensional systems would then be created by transcribing this scheduled information; a transcription that, with supporting proof, has a reliability of 97%, so close to perfection. A powerful way to approach the complexity of nature.

From now on, Stefan Matile's group will try to put this code into practice to produce surface materials like the ones used to make organic solar cells, which mimic the processes at work during photosynthesis. "We don't yet know if it will work exactly as we expect, but the adventure promises to be exciting."

Stefan Matile | EurekAlert!
Further information:
http://www.unige.ch

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>