Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Inspired by genetics, chemistry finally takes hold of its own code

Through the fundamental work carried out by a team from the University of Geneva and the NCCR Chemical Biology, chemists may be able to attain more complex supramolecular structures

Nature proves every day that it is both complex and efficient. Organic chemists are envious of it; their conventional tools confine them to simpler achievements. Thanks to the work of professor Stefan Matile's team from the University of Geneva, these limitations could become a thing of the past. His publication in the Nature Chemistry journal indeed offers a new kind of code to chemists, allowing them to access new levels of complexity.

Stefan Matile opts for sincerity. For him, if organic chemistry is often fond of simplifying its functional systems, it is because it is mostly impossible for it to construct and manage molecular architectures as complex as those produced with tremendous efficiency in nature. "It's a fact", says the UNIGE professor and NCCR Chemical Biology member, "that we are far from being able to match the genius of nature."

Where the complexity arises

The specialist attributes the genetic code to this genius of nature. "It is rather simple because it is based on four foundations—adenine, cytosine, guanine, and thymine (A, C, G, and T). The double helix structure of DNA is also quite simple. The complexity arises mainly from the cell's transfer of this information from one stage to the next."
Stefan Matile has long believed that a code also exists in organic chemistry and must be discovered, which he is convinced he has achieved with the assistance of his colleague, Edvinas Orentas.

"I must admit that this work is extremely complicated, fundamental, and theoretical," the professor continues. "But I also think it's quite revolutionary, especially if we are able to implement it on a practical level."

Laying the foundation

In fact, thanks to him, organic chemists may be able to stop laboriously constructing their functional systems, atom by atom, link by link. The code would allow them to write two-dimensional maps, a relatively simple and manageable challenge. The complexity of three-dimensional systems would then be created by transcribing this scheduled information; a transcription that, with supporting proof, has a reliability of 97%, so close to perfection. A powerful way to approach the complexity of nature.

From now on, Stefan Matile's group will try to put this code into practice to produce surface materials like the ones used to make organic solar cells, which mimic the processes at work during photosynthesis. "We don't yet know if it will work exactly as we expect, but the adventure promises to be exciting."

Stefan Matile | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>