Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inspired by genetics, chemistry finally takes hold of its own code

20.08.2012
Through the fundamental work carried out by a team from the University of Geneva and the NCCR Chemical Biology, chemists may be able to attain more complex supramolecular structures

Nature proves every day that it is both complex and efficient. Organic chemists are envious of it; their conventional tools confine them to simpler achievements. Thanks to the work of professor Stefan Matile's team from the University of Geneva, these limitations could become a thing of the past. His publication in the Nature Chemistry journal indeed offers a new kind of code to chemists, allowing them to access new levels of complexity.

Stefan Matile opts for sincerity. For him, if organic chemistry is often fond of simplifying its functional systems, it is because it is mostly impossible for it to construct and manage molecular architectures as complex as those produced with tremendous efficiency in nature. "It's a fact", says the UNIGE professor and NCCR Chemical Biology member, "that we are far from being able to match the genius of nature."

Where the complexity arises

The specialist attributes the genetic code to this genius of nature. "It is rather simple because it is based on four foundations—adenine, cytosine, guanine, and thymine (A, C, G, and T). The double helix structure of DNA is also quite simple. The complexity arises mainly from the cell's transfer of this information from one stage to the next."
Stefan Matile has long believed that a code also exists in organic chemistry and must be discovered, which he is convinced he has achieved with the assistance of his colleague, Edvinas Orentas.

"I must admit that this work is extremely complicated, fundamental, and theoretical," the professor continues. "But I also think it's quite revolutionary, especially if we are able to implement it on a practical level."

Laying the foundation

In fact, thanks to him, organic chemists may be able to stop laboriously constructing their functional systems, atom by atom, link by link. The code would allow them to write two-dimensional maps, a relatively simple and manageable challenge. The complexity of three-dimensional systems would then be created by transcribing this scheduled information; a transcription that, with supporting proof, has a reliability of 97%, so close to perfection. A powerful way to approach the complexity of nature.

From now on, Stefan Matile's group will try to put this code into practice to produce surface materials like the ones used to make organic solar cells, which mimic the processes at work during photosynthesis. "We don't yet know if it will work exactly as we expect, but the adventure promises to be exciting."

Stefan Matile | EurekAlert!
Further information:
http://www.unige.ch

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>