Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Inspired by Audio Cassettes

Economical nanostructured iron–cobalt catalysts for the Fischer–Tropsch synthesis

Audio cassettes make the production process for fuels less expensive: To produce nanoparticles made of inexpensive iron oxide cores with a very thin cobalt shell, an international team of researchers modified a method developed for the production of magnetic audio tapes. As the researchers report in the journal Angewandte Chemie, their particles are easily accessible on a large scale, and are excellent Fischer–Tropsch catalysts for the production of good diesel fractions.

On the occasion of the 125th anniversary of Angewandte Chemie, a one-day symposium is held on March 12 with several Nobel laureates. Learn more and join the free webcast or recording at

The increasing importance of shale gas and natural gas is bringing a century-old process back into the limelight: The Fischer–Tropsch synthesis, an industrial process for the liquefaction of coal developed in 1925, involves the catalytic conversion of a carbon monoxide/hydrogen mixture (synthesis gas) into gaseous and liquid hydrocarbons. These days, it is used in some countries for the production of ultrapure synthetic fuels from coal or natural gas. Biomass is also a good feedstock for this process.

The success of this process depends entirely on the catalyst, whose active component can be iron or cobalt. Each of these metals has advantages and disadvantages and one is chosen over the other based on the properties of the gas feed. Most large firms use cobalt, the major disadvantage of which is its price.

But, since only the surface of the catalytic particles is involved, one alternative is using particles with a core made of a less expensive material covered with a thin layer of the expensive, active material. However, this requires both nanometric accuracy and a cost-effective, simple, and scalable process for producing the catalytic particles, to ensure that they will still be cheaper than pure cobalt.

A Dutch, French, and German team led by Gadi Rothenberg at the University of Amsterdam together with Total Gaz & Energies Nouvelles (Paris) has now met this challenge by inventing new core–shell catalysts, inspired by patents from the 1960s for producing audio cassettes. The magnetic tapes used in these cassettes were coated with cigar-shaped iron oxide particles covered with a thin cobalt layer. By modifying this process, the researchers succeeded in making the spherical particles needed for catalysis.

The production process involves the synthesis of iron oxide nanoparticles from an iron chloride solution. Addition of a cobalt nitrate solution causes a thin layer of cobalt oxide to coat the nanoparticles. This allows the researchers to produce particles with a diameter of about 10 nm, consisting of an 8 nm iron oxide core and a whisper-thin, 1 nm cobalt-rich shell. These particles were processed with an alumina support to make pellets. To activate the catalyst, the pellets were heated under a hydrogen atmosphere, selectively reducing the cobalt oxide to metallic cobalt.

Tests in Fischer–Tropsch reactors at Lille and Bayreuth shows that the resulting particles are effective and robust catalysts. The product composition shows that the iron is also participating in the catalysis. There is clearly an iron–cobalt cooperative effect that has not been investigated before.

About the Author
Gadi Rothenberg is Professor and Chair of Heterogeneous Catalysis and Sustainable Chemistry at the University of Amsterdam. His research centers on catalyst discovery and optimisation for bulk chemicals and sustainable energy solutions.

Author: Gadi Rothenberg, University of Amsterdam (The Netherlands),

Title: Design of Nanostructured Iron–Cobalt Fischer–Tropsch Catalysts
Angewandte Chemie International Edition, Permalink to the article:

Gadi Rothenberg | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>