Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inspired by Audio Cassettes

08.03.2013
Economical nanostructured iron–cobalt catalysts for the Fischer–Tropsch synthesis

Audio cassettes make the production process for fuels less expensive: To produce nanoparticles made of inexpensive iron oxide cores with a very thin cobalt shell, an international team of researchers modified a method developed for the production of magnetic audio tapes. As the researchers report in the journal Angewandte Chemie, their particles are easily accessible on a large scale, and are excellent Fischer–Tropsch catalysts for the production of good diesel fractions.

On the occasion of the 125th anniversary of Angewandte Chemie, a one-day symposium is held on March 12 with several Nobel laureates. Learn more and join the free webcast or recording at chemistryviews.org/angewandtechemie125.

The increasing importance of shale gas and natural gas is bringing a century-old process back into the limelight: The Fischer–Tropsch synthesis, an industrial process for the liquefaction of coal developed in 1925, involves the catalytic conversion of a carbon monoxide/hydrogen mixture (synthesis gas) into gaseous and liquid hydrocarbons. These days, it is used in some countries for the production of ultrapure synthetic fuels from coal or natural gas. Biomass is also a good feedstock for this process.

The success of this process depends entirely on the catalyst, whose active component can be iron or cobalt. Each of these metals has advantages and disadvantages and one is chosen over the other based on the properties of the gas feed. Most large firms use cobalt, the major disadvantage of which is its price.

But, since only the surface of the catalytic particles is involved, one alternative is using particles with a core made of a less expensive material covered with a thin layer of the expensive, active material. However, this requires both nanometric accuracy and a cost-effective, simple, and scalable process for producing the catalytic particles, to ensure that they will still be cheaper than pure cobalt.

A Dutch, French, and German team led by Gadi Rothenberg at the University of Amsterdam together with Total Gaz & Energies Nouvelles (Paris) has now met this challenge by inventing new core–shell catalysts, inspired by patents from the 1960s for producing audio cassettes. The magnetic tapes used in these cassettes were coated with cigar-shaped iron oxide particles covered with a thin cobalt layer. By modifying this process, the researchers succeeded in making the spherical particles needed for catalysis.

The production process involves the synthesis of iron oxide nanoparticles from an iron chloride solution. Addition of a cobalt nitrate solution causes a thin layer of cobalt oxide to coat the nanoparticles. This allows the researchers to produce particles with a diameter of about 10 nm, consisting of an 8 nm iron oxide core and a whisper-thin, 1 nm cobalt-rich shell. These particles were processed with an alumina support to make pellets. To activate the catalyst, the pellets were heated under a hydrogen atmosphere, selectively reducing the cobalt oxide to metallic cobalt.

Tests in Fischer–Tropsch reactors at Lille and Bayreuth shows that the resulting particles are effective and robust catalysts. The product composition shows that the iron is also participating in the catalysis. There is clearly an iron–cobalt cooperative effect that has not been investigated before.

About the Author
Gadi Rothenberg is Professor and Chair of Heterogeneous Catalysis and Sustainable Chemistry at the University of Amsterdam. His research centers on catalyst discovery and optimisation for bulk chemicals and sustainable energy solutions.

Author: Gadi Rothenberg, University of Amsterdam (The Netherlands), http://hims.uva.nl/research/research-groups/overview/overview/content/folder/heterogeneous-catalysis-and-sustainable-chemistry/people/people.html

Title: Design of Nanostructured Iron–Cobalt Fischer–Tropsch Catalysts
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201209799

Gadi Rothenberg | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>