Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inspired by Audio Cassettes

08.03.2013
Economical nanostructured iron–cobalt catalysts for the Fischer–Tropsch synthesis

Audio cassettes make the production process for fuels less expensive: To produce nanoparticles made of inexpensive iron oxide cores with a very thin cobalt shell, an international team of researchers modified a method developed for the production of magnetic audio tapes. As the researchers report in the journal Angewandte Chemie, their particles are easily accessible on a large scale, and are excellent Fischer–Tropsch catalysts for the production of good diesel fractions.

On the occasion of the 125th anniversary of Angewandte Chemie, a one-day symposium is held on March 12 with several Nobel laureates. Learn more and join the free webcast or recording at chemistryviews.org/angewandtechemie125.

The increasing importance of shale gas and natural gas is bringing a century-old process back into the limelight: The Fischer–Tropsch synthesis, an industrial process for the liquefaction of coal developed in 1925, involves the catalytic conversion of a carbon monoxide/hydrogen mixture (synthesis gas) into gaseous and liquid hydrocarbons. These days, it is used in some countries for the production of ultrapure synthetic fuels from coal or natural gas. Biomass is also a good feedstock for this process.

The success of this process depends entirely on the catalyst, whose active component can be iron or cobalt. Each of these metals has advantages and disadvantages and one is chosen over the other based on the properties of the gas feed. Most large firms use cobalt, the major disadvantage of which is its price.

But, since only the surface of the catalytic particles is involved, one alternative is using particles with a core made of a less expensive material covered with a thin layer of the expensive, active material. However, this requires both nanometric accuracy and a cost-effective, simple, and scalable process for producing the catalytic particles, to ensure that they will still be cheaper than pure cobalt.

A Dutch, French, and German team led by Gadi Rothenberg at the University of Amsterdam together with Total Gaz & Energies Nouvelles (Paris) has now met this challenge by inventing new core–shell catalysts, inspired by patents from the 1960s for producing audio cassettes. The magnetic tapes used in these cassettes were coated with cigar-shaped iron oxide particles covered with a thin cobalt layer. By modifying this process, the researchers succeeded in making the spherical particles needed for catalysis.

The production process involves the synthesis of iron oxide nanoparticles from an iron chloride solution. Addition of a cobalt nitrate solution causes a thin layer of cobalt oxide to coat the nanoparticles. This allows the researchers to produce particles with a diameter of about 10 nm, consisting of an 8 nm iron oxide core and a whisper-thin, 1 nm cobalt-rich shell. These particles were processed with an alumina support to make pellets. To activate the catalyst, the pellets were heated under a hydrogen atmosphere, selectively reducing the cobalt oxide to metallic cobalt.

Tests in Fischer–Tropsch reactors at Lille and Bayreuth shows that the resulting particles are effective and robust catalysts. The product composition shows that the iron is also participating in the catalysis. There is clearly an iron–cobalt cooperative effect that has not been investigated before.

About the Author
Gadi Rothenberg is Professor and Chair of Heterogeneous Catalysis and Sustainable Chemistry at the University of Amsterdam. His research centers on catalyst discovery and optimisation for bulk chemicals and sustainable energy solutions.

Author: Gadi Rothenberg, University of Amsterdam (The Netherlands), http://hims.uva.nl/research/research-groups/overview/overview/content/folder/heterogeneous-catalysis-and-sustainable-chemistry/people/people.html

Title: Design of Nanostructured Iron–Cobalt Fischer–Tropsch Catalysts
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201209799

Gadi Rothenberg | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>