Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insomniac Flies Resemble Sleep-deprived Humans

04.06.2009
Researchers at Washington University School of Medicine in St. Louis have created a line of fruit flies that may someday help shed light on the mechanisms that cause insomnia in humans. The flies, which only get a small fraction of the sleep of normal flies, resemble insomniac humans in several ways.

"Insomnia is a common and debilitating disorder that results in substantial impairments in a person’s quality of life, reduces productivity and increases the risk for psychiatric illness," says senior author Paul Shaw, Ph.D. "We think this model has clear potential to help us learn more about the causes of insomnia and someday develop ways to test for or treat them in the clinic."

The findings are published June 3 in The Journal of Neuroscience.

One of Shaw's co-authors, Stephen Duntley, M.D., directs the Washington University Sleep Medicine Center.

"Insomnia is frustrating for clinicians for several reasons, including its high prevalence, uncertainties about how to define and categorize it, and how little we know about the pathophysiological mechanisms that can contribute to it," Duntley says. "The wonderful thing about this new model is that it lets us begin to sort out some of the many potential mechanisms, genetic and otherwise, that may underlie insomnia, hopefully leading to new interventions."

Shaw's lab was the first to show that fruit flies enter a state of inactivity comparable to sleep. The researchers demonstrated that the flies have periods of inactivity where greater stimulation is required to rouse them. Like humans, flies deprived of sleep one day will try to make up for it by sleeping more the next day, a phenomenon referred to as increased sleep drive or sleep debt.

As he studied the healthy flies, Shaw noticed that a few flies naturally slept less than others. He decided to take flies with insomnia-like characteristics and breed them to amplify those qualities. The flies he bred had difficulty falling asleep in normal circumstances, and their sleep was often interrupted or fragmented. He also used hyper-responsiveness to stimuli as a breeding guide. For example, if researchers turned on a light at night, insomniac flies woke and stayed up the rest of the night, while the healthy flies went back to sleep. The flies that stayed up were added to the breeding pool.

After generations of selective breeding, Shaw's group had produced a line of flies that naturally spent only an hour a day asleep—less than 10 percent of the 12 hours of sleep normal flies get. They quickly noticed an obvious and surprising behavioral change: even though flies have six legs, the insomniac flies fell over more often.

"We sent them to experts in neurodegeneration in flies to see if their lack of sleep or the breeding had somehow damaged their brains," Shaw says. "But the experts said there weren't any physical brain abnormalities."

Shaw briefly entertained the possibility that the flies might be sleepwalking but realized that declines in balance have also been reported in sleep-deprived humans. In addition, other indicators suggested the flies weren't getting enough sleep. His lab previously isolated a biomarker for sleepiness that is present in flies and human saliva, and the insomniac flies had high levels of it. The flies also were slower learners and gained more fat, two indicators for fly sleep deprivation that Shaw identified earlier. Similar symptoms also occur in sleep-deprived humans.

Lead author Laurent Seugnet, Ph.D., says that while the insomniac flies "clearly suffer consequences" from their lack of sleep, they also show some resistance to the adverse effects of sleep deprivation. For example, while 70 hours of sleep deprivation will kill a normal fly, the insomniac flies can spontaneously go up to 240 hours without sleep and still survive.

"Overall, the flies are able to perform better than they should, given how much sleep they miss," says Seugnet. "That makes it tempting to speculate that insomnia is like drug addiction. As it increases the body's overall vulnerability and risk of collapse, it also seems to boost certain factors that help resist collapse."

When researchers screened the genome of the insomniac flies for changes in gene activity levels, they found altered activity levels for genes involved in metabolism, nerve cell activity and sensory perception. Shaw's lab had previously demonstrated that the activity levels of at least two of these genes are changed in sleep-deprived humans.

Researchers speculate that some genes altered by insomnia and sleep deprivation may simultaneously contribute to both detrimental and temporarily advantageous effects. Shaw has conducted follow-up studies of the altered genes and how restoring normal genetic activity levels affects insomnia and its symptoms. He will publish the results in a forthcoming paper.

###

Seugnet L, Suzuki Y, Thimgan M, Donlea J, Gimbel SI, Gottschalk L, Duntley SP, Shaw PJ. Identifying sleep regulatory genes using a Drosophila model of insomnia. The Journal of Neuroscience, June 3, 2009.

Funding from the National Institutes of Health and the McDonnell Center for Cellular and Molecular Neurobiology supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>