Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Insomniac Flies Resemble Sleep-deprived Humans

Researchers at Washington University School of Medicine in St. Louis have created a line of fruit flies that may someday help shed light on the mechanisms that cause insomnia in humans. The flies, which only get a small fraction of the sleep of normal flies, resemble insomniac humans in several ways.

"Insomnia is a common and debilitating disorder that results in substantial impairments in a person’s quality of life, reduces productivity and increases the risk for psychiatric illness," says senior author Paul Shaw, Ph.D. "We think this model has clear potential to help us learn more about the causes of insomnia and someday develop ways to test for or treat them in the clinic."

The findings are published June 3 in The Journal of Neuroscience.

One of Shaw's co-authors, Stephen Duntley, M.D., directs the Washington University Sleep Medicine Center.

"Insomnia is frustrating for clinicians for several reasons, including its high prevalence, uncertainties about how to define and categorize it, and how little we know about the pathophysiological mechanisms that can contribute to it," Duntley says. "The wonderful thing about this new model is that it lets us begin to sort out some of the many potential mechanisms, genetic and otherwise, that may underlie insomnia, hopefully leading to new interventions."

Shaw's lab was the first to show that fruit flies enter a state of inactivity comparable to sleep. The researchers demonstrated that the flies have periods of inactivity where greater stimulation is required to rouse them. Like humans, flies deprived of sleep one day will try to make up for it by sleeping more the next day, a phenomenon referred to as increased sleep drive or sleep debt.

As he studied the healthy flies, Shaw noticed that a few flies naturally slept less than others. He decided to take flies with insomnia-like characteristics and breed them to amplify those qualities. The flies he bred had difficulty falling asleep in normal circumstances, and their sleep was often interrupted or fragmented. He also used hyper-responsiveness to stimuli as a breeding guide. For example, if researchers turned on a light at night, insomniac flies woke and stayed up the rest of the night, while the healthy flies went back to sleep. The flies that stayed up were added to the breeding pool.

After generations of selective breeding, Shaw's group had produced a line of flies that naturally spent only an hour a day asleep—less than 10 percent of the 12 hours of sleep normal flies get. They quickly noticed an obvious and surprising behavioral change: even though flies have six legs, the insomniac flies fell over more often.

"We sent them to experts in neurodegeneration in flies to see if their lack of sleep or the breeding had somehow damaged their brains," Shaw says. "But the experts said there weren't any physical brain abnormalities."

Shaw briefly entertained the possibility that the flies might be sleepwalking but realized that declines in balance have also been reported in sleep-deprived humans. In addition, other indicators suggested the flies weren't getting enough sleep. His lab previously isolated a biomarker for sleepiness that is present in flies and human saliva, and the insomniac flies had high levels of it. The flies also were slower learners and gained more fat, two indicators for fly sleep deprivation that Shaw identified earlier. Similar symptoms also occur in sleep-deprived humans.

Lead author Laurent Seugnet, Ph.D., says that while the insomniac flies "clearly suffer consequences" from their lack of sleep, they also show some resistance to the adverse effects of sleep deprivation. For example, while 70 hours of sleep deprivation will kill a normal fly, the insomniac flies can spontaneously go up to 240 hours without sleep and still survive.

"Overall, the flies are able to perform better than they should, given how much sleep they miss," says Seugnet. "That makes it tempting to speculate that insomnia is like drug addiction. As it increases the body's overall vulnerability and risk of collapse, it also seems to boost certain factors that help resist collapse."

When researchers screened the genome of the insomniac flies for changes in gene activity levels, they found altered activity levels for genes involved in metabolism, nerve cell activity and sensory perception. Shaw's lab had previously demonstrated that the activity levels of at least two of these genes are changed in sleep-deprived humans.

Researchers speculate that some genes altered by insomnia and sleep deprivation may simultaneously contribute to both detrimental and temporarily advantageous effects. Shaw has conducted follow-up studies of the altered genes and how restoring normal genetic activity levels affects insomnia and its symptoms. He will publish the results in a forthcoming paper.


Seugnet L, Suzuki Y, Thimgan M, Donlea J, Gimbel SI, Gottschalk L, Duntley SP, Shaw PJ. Identifying sleep regulatory genes using a Drosophila model of insomnia. The Journal of Neuroscience, June 3, 2009.

Funding from the National Institutes of Health and the McDonnell Center for Cellular and Molecular Neurobiology supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>