Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insights into the structure of a protein transport assistant

15.01.2014
Proteins are the molecular building blocks and machines of the cell and are involved in virtually every process of life.

After protein production, many proteins are equipped with attachments such as sugar residues in order to perform their tasks properly. This process is directly coupled to the transport across a membrane.


Many protein complexes are involved in protein synthesis.Through the ER translocon (green, blue and red) the newly synthesized protein is transported across the membrane (gray).

Graphic: Friedrich Förster / Copyright: MPI of Biochemistry

Employing various methods of structural biology, scientists at the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich, Germany, have now gained insights into the architecture of the protein complex (ER translocon) responsible for this process. The results of the joint project have now been published in Nature Communications.

Producing a protein is a highly intricate process for the cell and involves many individual steps. Depending on the purpose for which a protein is used, there are different sites for protein production: the cytoplasm or the endoplasmic reticulum (ER). The ER is separated by a membrane from its surroundings in the cytoplasm. Even before protein synthesis is completed, the proteins produced at the ER enter via its membrane into the interior of the ER and are modified through the attachment of sugar residues concomitantly. Without these attachments, the proteins would not be able to fold properly and thus would not fulfill their functions in the cell.

Scientists of the research group “Modeling of Protein Complexes” have now described the architecture of the protein complex responsible for the transport and modification of the newly produced protein: the ER translocon. “It is located in the membrane of the ER, and this fact, together with its size and complex composition, has greatly hampered previous structural studies,” says Friedrich Förster, group leader at the MPI of Biochemistry, describing the initial situation. The structures of many subunits and their arrangement in the native ER translocon have thus far remained elusive.

It was not until cryoelectron tomography came into use that researchers could gain first insight into the architecture of the translocon. The sample is “shock frozen” to preserve its natural structure. Using an electron microscope, the scientists capture two-dimensional images of the object from different perspectives, from which they then reconstruct a three-dimensional image. Further investigations have made it possible to identify individual modules in the structure. Among them is the module that attaches the sugar residues to the newly produced protein.

“Based on this method, we will now try to determine the structure and location of other components of the ER translocon," says Förster. If the researchers know the individual structures of the ER translocon and their arrangement in the complex, they can indirectly draw conclusions about the precise functions and interactions of all components.

Original publication
Pfeffer, S., Dudek, J., Gogala, M., Schorr, S., Linxweiler, J., Lang, S., Becker, T., Beckmann, R., Zimmermann, R., Förster, F.: Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon. Nature Commun, January 10, 2014

Doi: 10.1038/ncomms4072 (2013).

Contact
Dr. Friedrich Förster
Modeling of Protein Complexes
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Email: foerster@biochem.mpg.de
http://www.biochem.mpg.de/foerster
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de
Weitere Informationen:
http://www.biochem.mpg.de/foerster
- website of the research group "Modeling of Protein Complexes" (Friedrich Förster)
http://www.biochem.mpg.de/3686257/071_foerster_translocon_nature
- complete press release

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>