Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Insights into the structure of a protein transport assistant

Proteins are the molecular building blocks and machines of the cell and are involved in virtually every process of life.

After protein production, many proteins are equipped with attachments such as sugar residues in order to perform their tasks properly. This process is directly coupled to the transport across a membrane.

Many protein complexes are involved in protein synthesis.Through the ER translocon (green, blue and red) the newly synthesized protein is transported across the membrane (gray).

Graphic: Friedrich Förster / Copyright: MPI of Biochemistry

Employing various methods of structural biology, scientists at the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich, Germany, have now gained insights into the architecture of the protein complex (ER translocon) responsible for this process. The results of the joint project have now been published in Nature Communications.

Producing a protein is a highly intricate process for the cell and involves many individual steps. Depending on the purpose for which a protein is used, there are different sites for protein production: the cytoplasm or the endoplasmic reticulum (ER). The ER is separated by a membrane from its surroundings in the cytoplasm. Even before protein synthesis is completed, the proteins produced at the ER enter via its membrane into the interior of the ER and are modified through the attachment of sugar residues concomitantly. Without these attachments, the proteins would not be able to fold properly and thus would not fulfill their functions in the cell.

Scientists of the research group “Modeling of Protein Complexes” have now described the architecture of the protein complex responsible for the transport and modification of the newly produced protein: the ER translocon. “It is located in the membrane of the ER, and this fact, together with its size and complex composition, has greatly hampered previous structural studies,” says Friedrich Förster, group leader at the MPI of Biochemistry, describing the initial situation. The structures of many subunits and their arrangement in the native ER translocon have thus far remained elusive.

It was not until cryoelectron tomography came into use that researchers could gain first insight into the architecture of the translocon. The sample is “shock frozen” to preserve its natural structure. Using an electron microscope, the scientists capture two-dimensional images of the object from different perspectives, from which they then reconstruct a three-dimensional image. Further investigations have made it possible to identify individual modules in the structure. Among them is the module that attaches the sugar residues to the newly produced protein.

“Based on this method, we will now try to determine the structure and location of other components of the ER translocon," says Förster. If the researchers know the individual structures of the ER translocon and their arrangement in the complex, they can indirectly draw conclusions about the precise functions and interactions of all components.

Original publication
Pfeffer, S., Dudek, J., Gogala, M., Schorr, S., Linxweiler, J., Lang, S., Becker, T., Beckmann, R., Zimmermann, R., Förster, F.: Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon. Nature Commun, January 10, 2014

Doi: 10.1038/ncomms4072 (2013).

Dr. Friedrich Förster
Modeling of Protein Complexes
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
Weitere Informationen:
- website of the research group "Modeling of Protein Complexes" (Friedrich Förster)
- complete press release

Anja Konschak | Max-Planck-Institut
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>