Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insights into the structure of a protein transport assistant

15.01.2014
Proteins are the molecular building blocks and machines of the cell and are involved in virtually every process of life.

After protein production, many proteins are equipped with attachments such as sugar residues in order to perform their tasks properly. This process is directly coupled to the transport across a membrane.


Many protein complexes are involved in protein synthesis.Through the ER translocon (green, blue and red) the newly synthesized protein is transported across the membrane (gray).

Graphic: Friedrich Förster / Copyright: MPI of Biochemistry

Employing various methods of structural biology, scientists at the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich, Germany, have now gained insights into the architecture of the protein complex (ER translocon) responsible for this process. The results of the joint project have now been published in Nature Communications.

Producing a protein is a highly intricate process for the cell and involves many individual steps. Depending on the purpose for which a protein is used, there are different sites for protein production: the cytoplasm or the endoplasmic reticulum (ER). The ER is separated by a membrane from its surroundings in the cytoplasm. Even before protein synthesis is completed, the proteins produced at the ER enter via its membrane into the interior of the ER and are modified through the attachment of sugar residues concomitantly. Without these attachments, the proteins would not be able to fold properly and thus would not fulfill their functions in the cell.

Scientists of the research group “Modeling of Protein Complexes” have now described the architecture of the protein complex responsible for the transport and modification of the newly produced protein: the ER translocon. “It is located in the membrane of the ER, and this fact, together with its size and complex composition, has greatly hampered previous structural studies,” says Friedrich Förster, group leader at the MPI of Biochemistry, describing the initial situation. The structures of many subunits and their arrangement in the native ER translocon have thus far remained elusive.

It was not until cryoelectron tomography came into use that researchers could gain first insight into the architecture of the translocon. The sample is “shock frozen” to preserve its natural structure. Using an electron microscope, the scientists capture two-dimensional images of the object from different perspectives, from which they then reconstruct a three-dimensional image. Further investigations have made it possible to identify individual modules in the structure. Among them is the module that attaches the sugar residues to the newly produced protein.

“Based on this method, we will now try to determine the structure and location of other components of the ER translocon," says Förster. If the researchers know the individual structures of the ER translocon and their arrangement in the complex, they can indirectly draw conclusions about the precise functions and interactions of all components.

Original publication
Pfeffer, S., Dudek, J., Gogala, M., Schorr, S., Linxweiler, J., Lang, S., Becker, T., Beckmann, R., Zimmermann, R., Förster, F.: Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon. Nature Commun, January 10, 2014

Doi: 10.1038/ncomms4072 (2013).

Contact
Dr. Friedrich Förster
Modeling of Protein Complexes
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Email: foerster@biochem.mpg.de
http://www.biochem.mpg.de/foerster
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de
Weitere Informationen:
http://www.biochem.mpg.de/foerster
- website of the research group "Modeling of Protein Complexes" (Friedrich Förster)
http://www.biochem.mpg.de/3686257/071_foerster_translocon_nature
- complete press release

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>