Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into how stem cells determine what tissue to become

02.08.2010
Within 24 hours of culturing adult human stem cells on a new type of matrix, University of Michigan researchers were able to make predictions about how the cells would differentiate, or what type of tissue they would become. Their results are published in the Aug. 1 edition of Nature Methods.

Differentiation is the process of stem cells morphing into other types of cells. Understanding it is key to developing future stem cell-based regenerative therapies.

"We show, for the first time, that we can predict stem cell differentiation as early as Day 1," said Jianping Fu, an assistant professor in mechanical engineering and biomedical engineering who is the first author on the paper.

"Normally, it takes weeks or maybe longer to know how the stem cell will differentiate. Our work could speed up this lengthy process and could have important applications in drug screening and regenerative medicine. Our method could provide early indications of how the stem cells are differentiating and what the cell types they are becoming under a new drug treatment."

In this study, Fu and his colleagues examined stem cell mechanics, the slight forces the cells exert on the materials they are attached to. These traction forces were suspected to be involved in differentiation, but they have not been as widely studied as the chemical triggers. In this paper, the researchers show that the stiffness of the material on which stem cells are cultivated in a lab does, in fact, help to determine what type of cells they turn into.

"Our research confirms that mechanical factors are as important as the chemical factors regulating differentiation," Fu said. "The mechanical aspects have, until now, been largely ignored by stem cell biologists."

The researchers built a novel type of stem cell matrix, or scaffold, whose stiffness can be adjusted without altering its chemical composition, which cannot be done with conventional stem cell growth matrices, Fu said.

The new scaffold resembles an ultrafine carpet of "microposts," hair-like projections made of the elastic polymer polydimethylsiloxane---a key component in Silly Putty, Fu said. By adjusting the height of the microposts, the researchers were able to adjust the rigidity of the matrix.

In this experiment, the engineers used human mesenchymal stem cells, which are found in bone marrow and other connective tissues such as fat. The stem cells differentiated into bone when grown on stiffer scaffolds, and into fat when grown on more flexible scaffolds.

Once the researchers observed the cells differentiating according to the mechanical stiffness of the substrate, they decided to measure the cellular traction forces throughout the culturing process to see if they could predict how the cells would differentiate.

Using a technique called fluorescent microscopy, the researchers measured the bending of the microposts in order to quantify the traction forces.

"Our study shows that if the stem cells determine to differentiate into one cell type then their traction forces can be much greater than the ones that do not differentiate, or that differentiate into another cell type," Fu said. "We prove that we can use the evolution of the traction force as early indicators for stem cell differentiation."

The new matrix---manufactured through an inexpensive molding process---is so cheap to make that the researchers are giving it away to any interested scientists or engineers.

"We think this toolset provides a newly accessible, practical methodology for the whole community," Fu said.

The paper is called "Mechanical regulation of cell function using geometrically modulated elastomeric substrates." This work was conducted in Dr. Christopher Chen's group in the Department of Bioengineering at the University of Pennsylvania. The research was supported by the National Institutes of Health and the American Heart Association.

For more information on Jianping Fu's Integrated Biosystems and Biomechanics Lab, visit http://me.engin.umich.edu/ibbl.

The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $160 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world-class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create the Michigan Difference. Find out more at www.engin.umich.edu.

EDITORS: Photos are available at http://www.ns.umich.edu/Releases/2010/Jul10/micropost.html

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>