Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insights into side effects of thalidomide using magnetic nanoprobes

05.03.2012
Tokyo Tech’s Hiroshi Handa and colleagues have identified a key protein— cereblon —that plays a key role in the development of birth defects associated with thalidomide using unique sub-micrometer functionalized magnetic nanobeads.
The discovery opens up possibilities for the development of alternative and safer drugs for the treatment of multiple myeloma and leprosy.
Hiroshi Hanada describes his research on magnetic particles for biomedicine in a video interview in the latest Feb 2012 issue of Tokyo Tech’s on line newsletter the Tokyo Tech Bulletin: http://www.titech.ac.jp/bulletin/

Details about Hiroshi Handa’s report on the ‘Identification of a Primary Target of Thalidomide Teratogenicity’ published in Science 327, 1345 (2010).

Thalidomide was prescribed as a sedative for pregnant women to treat morning sickness in the late 1950s. It was removed from the market in the early 1960s, when its use was linked to birth defects including shortened or absent limbs, as well as ear, cardiac and gastrointestinal malformations. However, within a few years the powerful pain relief properties of thalidomide for leprosy patients suggested that the drug may yet have medical benefits. In the 1990s it was also proven to be effective in the treatment of the cancer multiple myeloma.

It is still little understood how use of thalidomide leads to the development of birth defects, and tight restrictions are maintained over administration of the drug to treat leprosy and cancer. Insights into the mechanism behind the toxic effects of thalidomide on pregnant women could help to find ways to avoid these side effects and release the potential of the drug as a powerful medical aid.

Researchers at Tokyo Tech have recently reported the development of high-performance affinity beads – magnetic beads 200 nm in diameter that can be attached to drugs and other compounds, allowing one-step affinity purification of drug targets and an insight into how the drugs act [1]. As Hiroshi Handa and his colleagues explain, “Currently, most commercially available drugs and physiologically active substances have been brought to market without knowledge of factors interacting with the drugs and the substances.” Handa have now applied the beads to unravelling the mystery behind the birth defects caused by thalidomide [2].

The researchers used ferrite glycidyl methacrylate beads for purity affiliation of thalidomide, and identified cereblon as a protein that binds directly with the drug. The researchers then performed in vivo experiments in zebrafish, which were recently shown to be affected by thalidomide during embryonic development and have the useful attribute of a transparent embryo so that the progress of development can be conveniently monitored. Knockdown of genes of interest is also easily implemented in zebrafish. Thalidomide treatment was found to noticeably affect the development of the pectoral fins and otic vesicles, which it is suggested, share common molecular pathways with that of developing limbs and ears in tetrapods.

Zebrafish have a gene that is orthologously similar to cereblon in humans. The researchers investigated the development of embryos in which this gene was knocked down and similar defects were observed as for embryos treated with thalidomide. Co-injection of messenger RNA for the cereblon-orthologous gene was found to rescue these defects. The results suggest a potential means to reverse the developmental problems caused by thalidomide treatment.

The researchers then investigated the role of cereblon in chicks, which are well-established model organisms for studying thalidomide-induced birth defects. Experiments on chicks further supported the conclusion that cereblon is a direct target in thalidomide-induced birth defects.

The action of thalidomide is complex and it is associated with a number of other mechanisms that may also cause problems in fetal development, including oxidative stress and antiangiogenic activity. However, as Handa and his colleagues explain, “identification of thalidomide’s direct target may allow rational design of more effective thalidomide derivatives without teratogenic activity”. The work holds promise for a role of thalidomide in medical treatment that is not blighted by the side effects observed in the past.

References:
[1] T. Ito, H. Ando, T. Suzuki, T. Ogura, K. Hotta,Y. Imamura, Y. Yamaguchi & H. Handa. “Identification of a Primary Target of Thalidomide Teratogenicity,” Science 327, 1345 (2010).
[2]S. Sakamoto, Y. Kabe, M. Hatakeyama, Y. Yamaguchi, & H. Handa. “Development and application of high-performance affinity beads: Toward chemical biology and drug discovery,” The Chemical Record 9, 66-85 (2009).

Further information:
Hidekazu Ueda and Yukiko Tokida
Center for Public Information
Tokyo Institute of Technology
2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
E-mail: kouhou@jim.titech.ac.jp
URL: http://www.titech.ac.jp/english/
Tel: +81-3-5734-2975
Fax: +81-3-5734-3661
About Tokyo Institute of Technology
As one of Japan’s top universities, Tokyo Institute of Technology seeks to contribute to civilization, peace and prosperity in the world, and aims at developing global human capabilities par excellence through pioneering research and education in science and technology, including industrial and social management. To achieve this mission, we have an eye on educating highly moral students to acquire not only scientific expertise but also expertise in the liberal arts, and a balanced knowledge of the social sciences and humanities, all while researching deeply from basics to practice with academic mastery. Through these activities, we wish to contribute to global sustainability of the natural world and the support of human life.

Website: http://www.titech.ac.jp/english/

Hidekazu Ueda | Tokyo Institute of Technology
Further information:
http://www.titech.ac.jp/english/

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>