Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insights into Limb Formation

14.08.2009
Investigators at Burnham Institute for Medical Research (Burnham) and the University of Connecticut Health Center (U.C.H.C.) have gained new understanding of the role hyaluronic acid (HA) plays in skeletal growth, chondrocyte maturation and joint formation in developing limbs.

Significantly, these discoveries were made using a novel mouse model in which the production of HA is blocked in a tissue-specific manner.

The Yamaguchi laboratory genetically modified the Has2 gene, which is a critical enzyme for HA synthesis, so that the gene can be "conditionally" disrupted in mice. This is the first time a conditional Has2 knockout mouse has been created, a breakthrough that opens vast possibilities for future research. The paper was published online in the journal Development on July 24.

HA is a large sugar molecule that is produced by every cell in the body and has been thought to play a role in joint disease, heart disease and invasive cancers. Yu Yamaguchi, M.D., Ph.D., a professor in the Sanford Children’s Health Research Center at Burnham and Robert Kosher, Ph.D., a professor in the Center for Regenerative Medicine and Skeletal Development at U.C.H.C. and colleagues showed that transgenic mice, in which Has2 was inactivated in the limb bud mesoderm, had shortened limbs, abnormal growth plates and duplicated bones in the fingers and toes.

“Because hyaluronic acid is so prevalent in the body, it has been difficult to study,” said Dr. Yamaguchi. “Systemic Has2 knockout mice died mid-gestation and could not be used to study the role of HA in adults. By inactivating Has2 in specific tissues, we give ourselves the opportunity to study the many roles HA plays in biology. This mouse model will be useful to study the role of HA in various age-related diseases and conditions, such as arthritis and skin aging, as well as cancer.”

To create the conditional knockout mice, the Yamaguchi laboratory genetically engineered the Has2 gene to create the Has2flox allele. The team then added the Prxl1-Cre transgene, which is associated with early limb bud mesenchyme to produce the conditional Has2 knockout mice.

The research was funded by grants from the National Institutes of Health.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The institute ranks among the top four institutions nationally for NIH grant funding and among the top 25 organizations worldwide for its research impact. For the past decade (1999-2009), Burnham ranked first worldwide in the fields of biology and biochemistry for the impact of its research publications (defined by citations per publication), according to the Institute for Scientific Information.

Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit public benefit corporation. For more information, please visit www.burnham.org.

Josh Baxt | Newswise Science News
Further information:
http://www.burnham.org/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>