Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insights into catalytic converters

27.07.2015

X-ray methods reveal interactions of active metals with gas molecules -- publication in Chemical Communications

Modern catalytic converters for the treatment of exhaust gases in vehicles with a combustion engine have largely contributed to reducing of pollutant emissions. By oxidation or reduction, i.e. the donation or acceptance of electrons, the catalysts convert combustion pollutants, such as carbon monoxide, nitrogen oxides and hydrocarbons, into carbon dioxide, water, and nitrogen.


With the help of X-rays, reactions in catalytic converters can be observed under close-to-reality conditions.

Photo: KIT-ITCP

Increasingly strict emission regulations call for a further reduction of fuel consumption and for an efficient use of the exhaust gas aftertreatment system. When adding the reduction agent ammonia formed by e.g. decomposition of urea, nitrogen oxides are converted into harmless nitrogen and water vapor over the catalytic converter. For this purpose, typically an urea solution (AdBlue®) is injected into the exhaust gas section upstream of the catalytic converter. (DOI: 10.1039/C5CC01758K)

To improve catalytic converters, it is required to precisely understand their function and the individual reaction steps. "Reliable findings relating to the reactions taking place may only be obtained under close-to-reality conditions," Professor Jan-Dierk Grunwaldt, Holder of the Chair for Chemical Technology and Catalysis of KIT, says. "This means that we have to watch the catalytic converters at work.

Synchrotron radiation sources are perfectly suited for this purpose." Synchrotron radiation is electromagnetic radiation (from infrared to hard X-rays) of several hundreds or even a million electron-volts in energy. Using hard X-rays, the properties of the active metal centers in the catalytic converter and their interactions with the gas molecules can be observed.

Two methods may be applied: (i) X-ray absorption spectroscopy (XAS) allows the determination of oxidation state and coordination number, i.e. the number of nearest neighbors of an atom; (ii) X-ray emission spectroscopy (XES) which can be used to distinguish between different molecules adsorbed on the catalytic converter. On this basis, it can be concluded which molecules cause reduction, when competing adsorption takes place, i.e. if several substances compete for adsorption on catalytic converters, and how individual molecules coordinate on the metal atom.

A group of researchers headed by Professor Jan-Dierk Grunwaldt, Professor Christoph R. Jacob, who recently moved from KIT to TU Braunschweig, and Dr. Pieter Glatzel at the European Synchrotron Radiation Facility (ESRF) in Grenoble / France now for the first time have combined the above methods to study under close-to-reality conditions reactions on two catalytically active materials applied in vehicles, namely Fe-ZSM-5 and Cu-SSZ-13. Both are based on zeolites, i.e. special minerals of porous structure. The results of the study are presented in the journal Chemical Communications.

With the help of the X-ray methods, the researchers studied and compared the interactions of the pollutant molecule nitrogen monoxide and the reducing agent ammonia with the iron and copper centers. "Although the reaction is the same in summary, we observed different reaction paths for the two catalytic converter materials," Tobias Günter, doctoral student at the Chair for Chemical Technology and Catalysis, reports.

The scientists found that the reaction on Fe-ZSM-5 is based on adsorption of nitrogen monoxide via a positively charged oxygen atom. The Cu-SSZ-13 catalytic converter, by contrast, did not exhibit this behavior. As no direct coordination via the nitrogen atom took place, the researchers assume a reaction from the gas phase with a potential activation on the ammonia molecule. "This also explains why ammonia inhibited the reaction on Fe-ZSM-5 contrary to Cu-SSZ-13," Tobias Günter explains.

The findings of the team headed by Jan-Dierk Grunwaldt provide valuable information for models to better predict the behavior of catalytic converters in operation. "Our approach based on the two X-ray methods cannot only be used for the materials mentioned, but may be transferred to many other materials and reactions," Professor Grunwaldt says. In the future, this approach will push the further development and improvement of catalytic converters.

###

Tobias Günter, Hudson W. P. Carvalho, Dmitry E. Doronkin, Thomas Sheppard, Pieter Glatzel, Andrew J. Atkins, Julian Rudolph, Christoph R. Jacob, Maria Casapu and Jan-Dierk Grunwaldt: Structural snapshots of the SCR reaction mechanism on Cu-SSZ-13. Chemical Communications, 2015, 51, 9227-9230. DOI: 10.1039/C5CC01758K.

Karlsruhe Institute of Technology (KIT) is a public corporation pursuing the tasks of a Baden-Wuerttemberg state university and of a national research center of the Helmholtz Association. The KIT mission combines the three core tasks of research, higher education, and innovation. With about 9,400 employees and 24,500 students, KIT is one of the big institutions of research and higher education in natural sciences and engineering in Europe.

Since 2010, the KIT has been certified as a family-friendly university.

Media Contact

Monika Landgraf
presse@kit.edu
49-721-608-47414

 @KITKarlsruhe

http://www.kit.edu/index.php 

Monika Landgraf | EurekAlert!

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>