Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into how the most iconic reaction in organic chemistry really works

10.07.2012
Diels and Alder won the Nobel; now UCLA's Kendall Houk makes the movie

In 1928, chemists Otto Diels and Kurt Alder first documented diene synthesis, a chemical reaction important for synthesizing many polymers, alkaloids and steroids. Their work on this mechanism, which came to be known as the Diels–Alder reaction, won them the 1950 Nobel Prize in chemistry.

Since then, the iconic reaction has become the most commonly used and studied mechanism in organic chemistry. But what happens during the reaction has never been entirely clear.

Now, Kendall N. Houk, UCLA's Saul Winstein Professor of Organic Chemistry, and colleagues report exactly how the Diels–Alder reaction occurs. Their research was published last week in the early online edition of the journal Proceedings of the National Academy of Sciences and will be published in an upcoming print edition.

"We have examined the molecular dynamics of the Diels–Alder reaction, which has become the most important reaction in synthesis, in detail to understand how it happens," said Houk, who is a member of the California NanoSystems Institute at UCLA.

Houk and his colleagues created a number of simulations — he calls them short movies — of molecules coming together and reacting.

(Houk isn't the only one making movies about Diels–Alder. UCLA organic chemistry students in Professor Neil Garg's class have produced a series of amusing music videos in which they reference the reaction: Watch "Chemistry Jock" [reference at 2:08], "Hey There Neil Garg" [1:44] and "Payphone" [1:07].)

"The idea," Houk said, "is to understand how the reaction happens — not just that A goes to B and B goes to C, but to actually follow how the bonds are forming and how the atoms are moving as these things come together. Using the massive computing power we have now, we get a degree of resolution of the mechanism that was not really possible before. It took a lot of computer time, but as a result, we now have unprecedented insight into how this reaction occurs."

Organic chemists have argued about this for years: If two bonds form during a reaction, do they form at the same time, or does one form first and then the other?

"We find that for the simplest Diels–Alder cycloaddition, it takes only about five femtoseconds on average between the formation of the two bonds; we consider that as occurring simultaneously," Houk said. (A femtosecond is approximately one millionth of one billionth of a second.)

Houk's new PNAS paper is his first in the journal since being elected to the National Academy of Sciences in 2010. The same PNAS issue also features an interview with Houk, who is one of the most prolific chemists in the world and one of the world's leading physical organic chemists.

"We have studied many different classes of reactions and come up with various kinds of rules for understanding why things happen the way they do," Houk said in the interview.

He and his colleagues — who include David Baker at the University of Washington, Charles Doubleday at Columbia University and Kersey Black at Claremont McKenna College — use computational methods to better understand basic chemical reactions and to design proteins and enzymes to catalyze chemical reactions. The combination of computational design and molecular biology "leads to a catalyst for whatever reaction is needed, if we can get this all to work properly," Houk said.

Describing his research to predict the structure of novel proteins that could catalyze specific chemical reactions, he said, "The idea is to design a catalyst for any reaction that's important for whatever reason — an important drug or a commercial product, for example."

Designing proteins and enzymes is difficult, but it can be successful.

"We've beaten really enormous odds but have really just scratched the surface of what is possible," Houk said. "Future developments in theory and computing power should make this work much better."

Black and Doubleday are co-authors with Houk on the new PNAS article, along with Peng Liu, a postdoctoral scholar in Houk's laboratory, and Lai Xu, who earned her Ph.D. in Houk's lab and is currently a postdoctoral scholar at Texas Tech University. (Liu, who also conducted his Ph.D. research in Houk's lab, was awarded a UCLA Chancellor's postdoctoral award last month.)

Houk has pioneered the use of computer calculations and simulations to study organic chemistry and to predict chemical reactivity. His research group has made predictions of new phenomena that have been verified experimentally, and he has made critical contributions to our understanding of how enzymes are able to selectively catalyze reactions.

In 2008, his research group used computer methods to create "designer enzymes" and to predict structures of proteins that can catalyze reactions which do not occur naturally — a major milestone in computational chemistry and protein engineering. Designer enzymes are likely to have applications for defense against biological warfare by deactivating pathogenic biological agents, and for creating more effective medications, Houk said.

He and his colleagues are currently working on computational methods to predict catalysts for reactions that will have important applications in industry and in therapies for fighting disease.

"Our work is theoretical and computational but is always tied to real phenomena," Houk said. "We first try to understand what is happening and then try to make predictions that experimentalists can test. The goal of our research is to use computational methods to design the arrangement of groups inside a protein to cause any desired reaction to occur."

For more on Houk, visit his website at www.chem.ucla.edu/dept/Faculty/houk.html.

UCLA to celebrate life and legacy of late chemist Saul Winstein

On Oct. 6, UCLA will celebrate what would have been Saul Winstein's 100th birthday with a who's who of distinguished chemists. The event, which runs from 10 a.m. to 5 p.m. at the California NanoSystems Institute at UCLA, will be followed by a banquet at UCLA's Faculty Center.

Winstein, a professor at UCLA from 1941 until his death in 1969, was one of the leading physical organic chemists of the 1950s and '60s, employing the tools of physical chemistry to explore reactions in solution. In 1971, he was posthumously awarded the prestigious National Medal of Science. Winstein, his wife, Sylvia, who passed away this year, and their children all were undergraduates at UCLA.

Seventy-two students obtained their Ph.D. degrees under Winstein's supervision, and 86 postdoctoral fellows came from all parts of the world to collaborate with him.

"Saul Winstein was the most prominent physical organic chemist in the period when I began my career," said Houk, who holds the UCLA endowed chair named in honor of Winstein. "He is one of my heroes in chemistry. His specialty was understanding how reactions occur in solution. He developed many of the concepts that we use today. We now do computationally things that Saul Winstein used to do experimentally."

UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and five faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>