Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insights gained from growing cold-causing virus on sinus tissue

11.04.2011
Using sinus tissue removed during surgery at University of Wisconsin Hospital and Clinics, researchers at the University of Wisconsin-Madison have managed to grow a recently discovered species of human rhinovirus (HRV), the most frequent cause of the common cold, in culture.

The researchers found that the virus, which is associated with up to half of all HRV infections in children, has reproductive properties that differ from those of other members of the HRV family.

The accomplishments, reported in Nature Medicine on April 11, should allow antiviral compounds to be screened to see if they stop the virus from growing.

The report sheds light on HRV-C, a new member of the HRV family that also includes the well-known HRV-A and HRV-B. Discovered five years ago, HRV-C has been notoriously difficult to grow in standard cell cultures and, therefore, impossible to study.

"We now have evidence that there may be new approaches to treating or preventing HRV-C infections," says senior author James Gern, professor of medicine at the UW-Madison School of Medicine and Public Health and an asthma expert at American Family Children's Hospital.

Future drugs could be especially useful for children and adults who have asthma and other lung problems, Gern says.

Recent studies have shown that in addition to its major role in the common cold, HRV-C is responsible for between 50 percent and 80 percent of asthma attacks. HRV-C is a frequent cause of wheezing illnesses in infants and may be especially likely to cause asthma attacks in children. HRV infections of all kinds also can greatly worsen chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease.

Like other scientists, Yury Bochkov, a virologist in Gern's lab, was unable to grow HRV-C in standard cell lines. So he turned to nasal tissue he collected following sinus surgery—and was surprised to find success. He grew significant amounts of two forms of HRV-C, then sequenced the complete virus genome and engineered an identical copy of it in a plasmid vector.

Studying the reproduction of the living, growing virus, he found that HRV-C replication appeared to occur in specific kinds of cells localized in nasal epithelium tissue.

"We also found that HRV-C does not attach to the two receptors that HRV-A and HRV-B use," Bochkov says. "HRV-C uses a distinct, yet unknown, receptor that is absent or under-expressed in many cell lines."

HRV-C also responded differently to antibodies that block receptor binding.

"Antibodies that normally keep HRV-A and HRV-B from binding to their receptors did not prevent HRV-C from binding to them," Bochkov says.

The findings suggest that new approaches are needed to treat HRV-C, says Gern.

"Previous drug candidates for the common cold were tested only against HRV-A and HRV-B," he says. "For more effective medications, we need to also target HRV-C."

Bochkov will continue to use the organ culture system to study details of HRV-C biology.

"It's now clear that these viruses have unique growth requirements," he says.

Collaborators on the study included Ann Palmenberg, Wai-Ming Lee, Svetlana Amineva, Xin Sun, Thomas Pasic and Nizar Jarjour from UW-Madison; and Jennifer Rathe and Stephen Liggett from University of Maryland.

Toni Morrissey | EurekAlert!
Further information:
http://www.uwhealth.org

Further reports about: HRV HRV-A HRV-B HRV-C Management Insights feature asthma attack

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>