Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insights gained from growing cold-causing virus on sinus tissue

11.04.2011
Using sinus tissue removed during surgery at University of Wisconsin Hospital and Clinics, researchers at the University of Wisconsin-Madison have managed to grow a recently discovered species of human rhinovirus (HRV), the most frequent cause of the common cold, in culture.

The researchers found that the virus, which is associated with up to half of all HRV infections in children, has reproductive properties that differ from those of other members of the HRV family.

The accomplishments, reported in Nature Medicine on April 11, should allow antiviral compounds to be screened to see if they stop the virus from growing.

The report sheds light on HRV-C, a new member of the HRV family that also includes the well-known HRV-A and HRV-B. Discovered five years ago, HRV-C has been notoriously difficult to grow in standard cell cultures and, therefore, impossible to study.

"We now have evidence that there may be new approaches to treating or preventing HRV-C infections," says senior author James Gern, professor of medicine at the UW-Madison School of Medicine and Public Health and an asthma expert at American Family Children's Hospital.

Future drugs could be especially useful for children and adults who have asthma and other lung problems, Gern says.

Recent studies have shown that in addition to its major role in the common cold, HRV-C is responsible for between 50 percent and 80 percent of asthma attacks. HRV-C is a frequent cause of wheezing illnesses in infants and may be especially likely to cause asthma attacks in children. HRV infections of all kinds also can greatly worsen chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease.

Like other scientists, Yury Bochkov, a virologist in Gern's lab, was unable to grow HRV-C in standard cell lines. So he turned to nasal tissue he collected following sinus surgery—and was surprised to find success. He grew significant amounts of two forms of HRV-C, then sequenced the complete virus genome and engineered an identical copy of it in a plasmid vector.

Studying the reproduction of the living, growing virus, he found that HRV-C replication appeared to occur in specific kinds of cells localized in nasal epithelium tissue.

"We also found that HRV-C does not attach to the two receptors that HRV-A and HRV-B use," Bochkov says. "HRV-C uses a distinct, yet unknown, receptor that is absent or under-expressed in many cell lines."

HRV-C also responded differently to antibodies that block receptor binding.

"Antibodies that normally keep HRV-A and HRV-B from binding to their receptors did not prevent HRV-C from binding to them," Bochkov says.

The findings suggest that new approaches are needed to treat HRV-C, says Gern.

"Previous drug candidates for the common cold were tested only against HRV-A and HRV-B," he says. "For more effective medications, we need to also target HRV-C."

Bochkov will continue to use the organ culture system to study details of HRV-C biology.

"It's now clear that these viruses have unique growth requirements," he says.

Collaborators on the study included Ann Palmenberg, Wai-Ming Lee, Svetlana Amineva, Xin Sun, Thomas Pasic and Nizar Jarjour from UW-Madison; and Jennifer Rathe and Stephen Liggett from University of Maryland.

Toni Morrissey | EurekAlert!
Further information:
http://www.uwhealth.org

Further reports about: HRV HRV-A HRV-B HRV-C Management Insights feature asthma attack

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>