Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights could mean better fish feeds

16.08.2010
A better understanding of what happens in a fish’s body when it eats could lead to the production of better fish feeds. Researchers at the University of Gothenburg, Sweden, are hoping to contribute to more energy-efficient aquaculture. In the long term, this could increase the supply of farmed fish and so provide more food for the Earth’s burgeoning population.

Studies of fish by researcher Henrik Seth from the University of Gothenburg’s Department of Zoology have helped to increase our understanding of what happens in parts of the body after one of its most frequently recurring activities: eating.

It has long been known that a number of changes take place in the body following food intake, including an increase in blood flow to the stomach and intestines. This happens in humans and other mammals as well as in fish. However, we still know relatively little about the signals that trigger these changes and how they are regulated. Both the volume and the chemical composition of food play a role in how the body reacts.

Chemical composition affects energy consumtion
“It’s not just blood flow that is affected by its chemical composition, but also energy consumption in the stomach and intestines, and these factors are believed to be interlinked,” says Seth.

If energy consumption in the stomach and intestines rises, an increased blood flow will be needed to supply the active tissue with oxygen and nutrients.

“Increased blood flow is also important for carrying away absorbed nutrients so that they can be used to nourish different parts of the body and to build up and repair different tissues.”

The results of Henrik Seth’s research also show that parts of a fish’s nervous system are involved in this regulation, and that a number of hormones (including cholecystokinin) can affect this regulation depending on the composition of the food.

It is primarily here that an increased understanding of this field could make it possible to produce fish feeds in the future that require less energy to be broken down and absorbed.

“It might then be possible to enhance the growth of farmed fish, which would greatly increase the efficiency of fish farming with less wastage of energy,” says Seth. “Using nutrients as efficiently as possible may prove increasingly important as the global population continues to swell.”

The thesis On the Regulation of Postprandial Gastrointestinal Blood Flow in Teleost Fish was successfully defended on 11 June.

Journal: Am J Physiol Regul Integr Comp Physiol. 298, R1240-1248. 2010 Feb 17.
Title: Cholecystokinin (CCK) as a potential regulator of cardiac function and postprandial gut blood flow in rainbow trout (Oncorhynchus mykiss).

Authors: Seth H, Gräns A, Axelsson M. (2010)

For further information, please contact:
Henrik Seth, Department of Zoology, University of Gothenburg
+46 31 786 34 85
+46 707 22 30 49
H.Seth@zool.gu.se

Helena Aaberg | idw
Further information:
http://gupea.ub.gu.se/handle/2077/22030

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>