Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insights on the Evolution of Snake Fangs

01.08.2008
Findings by an international team of scientists offer new clues to the origin of the extraordinary adaptation that allowed snakes to flourish in nearly every corner of the globe. The scientists say these findings also have other, bigger implications for evolution and development, and the way in which genes underlying developmental changes can cause changes in form and function.

A rare examination of snake embryos suggests that an ancient change in the development of the upper jaw in some snakes may have paved the way for the evolution of fangs and associated venom glands.

The findings, published in the July 31 issue of the journal Nature, offer new clues to the origin of an extraordinary adaptation that allowed snakes to flourish in nearly every corner of the globe.

The work by a multinational team of scientists, including Dr. Ram Reshef of the Faculty of Biology, Technion-Israel Institute of Technology, reveals that fanged snakes have two distinct embryonic developmental centers that form the tissue of their upper jaw teeth. Snakes without fangs have only one developmental center that runs the full length of the upper jaw.

... more about:
»Evolution »Reshef »gland

Reshef said the Nature paper has implications for biologists beyond the history of snakes. “The whole thing is about understanding the big question of evolution and development, the way in which genes underlying developmental changes can cause changes in form and function,” he noted.

The two developmental centers in fanged snakes—one toward the front of the jaw and one toward the back—may have allowed the back teeth to evolve in tandem with a venom gland, the researchers say.

Rear-fanged snakes such as grass snakes maintain this distinct dual pattern. But front-fanged snakes such as vipers and cobras appear to have taken the change even further, doing away with the front developmental center entirely. In these snakes, fangs that develop in the back of the jaw migrate to the front as the snake’s head changes in shape as it grows, Reshef said.

The findings are “an extraordinarily important study that addresses the underlying force of variation upon which the venomous system of snakes was built,” said Kenneth Kardong, a professor of zoology at Washington State University and a pioneering researcher in snake evolution.

The embryonic clues gleaned by Reshef and colleagues could help answer some long-standing questions about the snake family tree. For instance, did venomous fangs evolve more than once in snakes? In some family trees based on genetic information, rear-fanged and front-fanged snakes don’t appear to share a recent common ancestor, suggesting that fangs may have evolved independently in the two groups.

On the other hand, the new embryonic evidence indicates that rear- and front-fanged snakes share a developmental pathway in the upper jaw that is distinct from the pathway in non-fanged snakes. They may have inherited this pathway from a common ancestor, making them more closely related than some researchers have suggested.

The current study does not overturn any particular snake family tree, said Reshef. Rather, “it gives a nice explanation of how developmentally new structures appear and how they have helped the wonderful success of snakes,” he said.

Fanged snakes are members of the “advanced snakes,” which differ from more ancient snake groups such as boas and other constrictors that wrap their body around the prey and swallow it whole. Advanced snakes began sweeping through the world 50 to 60 million years, often at the expense of constrictor snakes, as the climate shifted to a cool and dry pattern that led to more open, less forested landscapes.

In the new environment, the slow-moving constrictors were less successful predators than the quicker advanced snakes, which were replacing the primitive jaw with a plethora of new adaptations, including venomous fangs and glands.

Researchers from Leiden University in The Netherlands, Whitman College in Walla Walla, Washington, USA, the University of South Australia in Adelaide, Venom Supplies Pty. Ltd. in Australia, Tel Aviv University in Israel and the University of Melbourne in Australia also contributed to the Nature study.

The Technion-Israel Institute of Technology is Israel's leading science and technology university. Home to the country’s winners of the Nobel Prize in science, it commands a worldwide reputation for its pioneering work in nanotechnology, computer science, biotechnology, water-resource management, materials engineering, aerospace and medicine. The majority of the founders and managers of Israel's high-tech companies are alumni. Based in New York City, the American Technion Society (ATS) is the leading American organization supporting higher education in Israel, with 22 offices around the country.

Kevin Hattori | Newswise Science News
Further information:
http://www.ats.org

Further reports about: Evolution Reshef gland

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>