Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into DNA repair process may spur better cancer therapies

01.10.2013
By detailing a process required for repairing DNA breakage, scientists at the Duke Cancer Institute have gained a better understanding of how cells deal with the barrage of damage that can contribute to cancer and other diseases.

The insights, reported online the week of Sept. 30, 2013, in the journal Proceedings of the National Academy of Sciences, build on earlier work by the research team and identify new prospects for developing cancer therapies.

The researchers have focused on a complex series of events that cells routinely undertake to repair DNA damaged by sun exposure, smoking and even normal metabolism. If not correctly repaired, DNA breakages can result in cellular damage leading to cancer.

"We never had good assays to measure how DNA breaks are repaired, and there were few good tools to study how that repair unfolds at the molecular level," said senior author Michael Kastan, M.D., PhD, executive director of the Duke Cancer Institute. "Our work for the first time enables us to both sensitively measure the repair of DNA breaks and study the molecular mechanisms by which they occur."

DNA inside the cell faces a challenge for repairing itself because it is so compacted in the cell nucleus. Tightly wrapped in a complex of proteins called chromatin, the DNA is spooled like thread around a protein structure called a nucleosome. DNA could suffer a breakage that would go unheeded if it remained deep within the reel.

The system developed by Kastan and colleagues induced DNA breakage at defined points on the DNA strands, enabling researchers to chronicle events as the cells launched the repair process.

What they described for the first time was a choreographed interaction in which the tightly wound DNA was temporarily loosened when a key protein, called nucleolin, was recruited to the breakage site, disrupting the nucleosome spool. The process was then reversed when the nucleosome was re-formed after repair was complete.

"Our study demonstrates for the first time the functional importance of nucleosome disruption in DNA repair," Kastan said. "This nucleosome disruption allows DNA repair proteins to access the DNA lesion and begin the process of mending the breakage."

Kastan said the finding provides key insights for how cells remain healthy, as well as how the repair process could potentially be manipulated. New cancer therapies, for instance, could target nucleolin to enhance sensitivity of tumor cells to radiation or chemotherapies, he said.

"This could give us an opportunity to make current treatments more potent," Kastan said. "That would be a next area of research, which we are especially interested in pursuing."

In addition to Kastan, study authors included Michael Goldstein, Frederick A. Derheimer and Jacqueline Tait-Mulder; all authors were previously at St. Jude Children's Research Hospital.

The work was supported by grants from the National Institutes of Health (CA71387, CA159826, P30CA14236, and P30CA21765), DFG (German Research Foundation), and the American Lebanese Syrian Associated Charities of St. Jude Children's Research Hospital.

Sarah Avery | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>