Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insights into the Development of the Heart - Findings Contribute to Understanding Malformations

26.03.2013
Viewed from the outside, our body looks completely symmetrical. However, most internal organs – including the heart – are formed asymmetrically.

The right side of the heart is responsible for pulmonary circulation; the left side supplies the rest of the body. This asymmetry allows the heart to do its job effectively. In a study on zebrafish embryos, the MDC researchers Dr. Justus Veerkamp and PD Dr. Salim Seyfried have now shown how the left and right sides of the heart develop differently. Their findings were published in the journal Developmental Cell (doi: http://dx.doi.org/10.1016/j.devcel.2013.01.026)*.

A protein called Nodal plays an important role in the development of asymmetry. In an early stage of heart development, Nodal is formed on the left side and triggers a multi-step signaling cascade that enables the cardiac progenitor cells on this side to migrate faster. The researchers were able to observe the migration of the cardiac progenitor cells in the zebrafish embryos in vivo. Since the embryos are transparent it is possible to view each single cell using the microscope.

While analyzing the individual proteins involved in the asymmetric development of the heart, Dr. Veerkamp and Dr. Seyfried encountered a surprise: Previously, scientists had assumed that another signaling molecule, the protein Bmp, triggered cell migration on the left side of the heart and, as a consequence, must be very active there.

Current studies, however, show just the opposite: Bmp reduces the motility of the cells that form the heart. The protein Nodal regulates this process by activating the enzyme Has2. This in turn restricts Bmp activity on the left side. Thus, the cells of the left side of the heart migrate faster and ultimately form a functional, asymmetric heart.

However, when the researchers modulated the experiments so that individual proteins of the signaling cascade were expressed at elevated or decreased levels, the cardiac cells showed subtle differences in “random walk” cell motility rates. This resulted in the development of hearts that were completely symmetrical or whose sides were laterally inverted.

Many of these malformations of the heart in zebrafish embryos are also known in humans. Often asymmetric disorders not only affect the heart but also other organs such as the spleen. It may be missing or two spleens may be present. Depending on the severity of the malformations, the problems of the affected individuals vary in seriousness. It is also possible that the processes identified by the researchers are also involved in the development of diseases in which cell migration plays a role.
*Unilateral dampening of Bmp activity by Nodal generates cardiac left-right asymmetry
Justus Veerkamp1, Franziska Rudolph1, Zoltan Cseresnyes1, Florian Priller1, Cécile Otten1, Marc Renz1, Liliana Schaefer2 and Salim Abdelilah-Seyfried1, 3

1Cardiovascular Department, Max Delbrück Center (MDC) for Molecular Medicine, 13125 Berlin, Germany
2Institute for General Pharmacology and Toxicology, Goethe University, Theodor-Stern Kai 7, 60590 Frankfurt/Main, Germany
3Corresponding author: Salim Abdelilah-Seyfried, Max Delbrück Center (MDC) for Molecular Medicine, Robert-Rössle Str. 10, 13125 Berlin, Germany. e-mail: seyfried@mdc-berlin.de

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>